No books or notes allowed. No laptop or wireless devices allowed. Show all your work for full credit. Write clearly and legibly.

Name (print):

Question:	1	2	3	Total
Points:	75	15	30	120
Score:				

Question 1

75 point
Let X and Y be two jointly continuous r.v. with density function

$$
f(x, y)= \begin{cases}e^{-y} & 0<x<y \\ 0 & \text { otherwise }\end{cases}
$$

(a) (15 points) Find the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$.

Solution: We have

$$
f_{X}(x)=\int_{x}^{\infty} e^{-y} d y=e^{-x} \quad \text { if } x>0
$$

while

$$
f_{Y}(y)=\int_{0}^{y} e^{-y} d x=y e^{-y} \quad \text { if } y>0
$$

(b) (15 points) Find the conditional density functions $f_{X \mid Y}(x \mid y)$ and $f_{Y \mid X}(y \mid x)$.

Solution: We have

$$
f_{X \mid Y}(x \mid y)=\frac{e^{-y}}{y e^{-y}}=\frac{1}{y} \quad \text { if } 0<x<y
$$

while

$$
f_{Y \mid X}(y \mid x)=\frac{e^{-y}}{e^{-x}}=e^{-(y-x)} \quad \text { if } 0<x<y
$$

(c) (15 points) Find the expectation $\mathbb{E}(X \mid Y=y)$ of X given $Y=y$.

Solution: Since the density $f_{X \mid Y}(x \mid y)$ is uniform in $[0, y]$ we get that

$$
\mathbb{E}(X \mid Y)=\frac{y}{2}
$$

(d) (15 points) Let now $U=X$ and $V=Y-X$. Find the joint density function $F_{U, V}(u, v)$ of U and V.

Solution: Inverting we get $X=U$ and $Y=U+V$. Since the Jacobian of the change of variable is 1 we get

$$
f_{U, V}(u, v)= \begin{cases}e^{-(u+v)} & u, v>0 \\ 0 & \text { otherwise }\end{cases}
$$

(e) (15 points) Are X and Y independent? What about U and V ?

Solution: Since $f_{X \mid Y}(x \mid y)$ depends explicitly on y, X and Y are not independent.
Clearly we have

$$
f_{U, V}(u, v)=f_{U}(u) f_{V}(v)
$$

where

$$
\begin{aligned}
& f_{U}(u)=e^{-u} \\
& f_{V}(v)=e^{-v}
\end{aligned}
$$

so that U and V are independent.

Given a continuous r.v. X let $\tilde{x}_{\frac{1}{2}}$, the median, be defined as

$$
\mathbb{P}\left(X \leq \tilde{x}_{\frac{1}{2}}\right)=\frac{1}{2}
$$

and $\tilde{x}_{\frac{3}{4}}$, the (upper)-quartile, be defined as

$$
\mathbb{P}\left(X \leq \tilde{x}_{\frac{3}{4}}\right)=\frac{3}{4}
$$

Assume now that X is an exponential r.v. Show that

$$
\tilde{x}_{\frac{3}{4}}=2 \tilde{x}_{\frac{1}{2}} .
$$

Solution: We have

$$
F_{X}(x)=1-e^{-\lambda x}
$$

so that $\tilde{x}_{\frac{1}{2}}$ satisfies

$$
e^{-\lambda \tilde{x}_{\frac{1}{2}}}=\frac{1}{2}
$$

and similarly $\tilde{x}_{\frac{3}{4}}$ satisfies

$$
e^{-\lambda \tilde{x}_{\frac{3}{4}}^{4}}=\frac{1}{4} .
$$

Thus

$$
e^{-\lambda 2 \tilde{x}_{\frac{1}{2}}}=\left(e^{-\lambda \tilde{x}_{\frac{1}{2}}}\right)^{2}=e^{-\lambda \tilde{x}_{\frac{3}{4}}} .
$$

Question 3... 30 point
You are waiting for the bus at a bus station. To go home you can take two bus lines: line A or line B . The waiting time for the next line A bus is described by an exponential r.v. T_{A} with parameter 2 while the waiting time for the next line B bus is described by an exponential r.v. T_{B} with parameter 3 . Finally T_{A} and T_{B} are independent.
(a) (15 points) Find the distribution of the waiting time T till the arrival of the next useful bus. (Hint: Observe that $T=\min \left\{T_{A}, T_{B}\right\}$. Compute $\mathbb{P}(T>t)$.)

Solution: Clearly we have

$$
T=\min \left\{T_{A}, T_{B}\right\}
$$

so that

$$
\begin{aligned}
\mathbb{P}(T>t)=\mathbb{P}\left(\min \left\{T_{A}, T_{B}\right\}>t\right) & =\mathbb{P}\left(T_{A}>t \& T_{B}>t\right)= \\
\mathbb{P}\left(T_{A}>t\right) \mathbb{P}\left(T_{B}>t\right) & =e^{-5 t}
\end{aligned}
$$

Thus

$$
F(t)=\mathbb{P}(T<t)=1-e^{-5 t}
$$

so that T is an exponential with parameter 5 .
(b) (15 points) The first bus that passes is full and you cannot take it. How long will you have to wait, in average, till the next bus arrives? Justify your answer.

Solution: Natural interpretation. Assume that the first bus arriving is from line A. Then another bus from line A will arrive in a time T_{A} with exponential distribution with parameter 2. The waiting time for the arrival of a bus from line B is still an exponential distribution with parameter 3 due to the loss of memory property of the exponential distribution. Thus the waiting time is again exponentially distributed with parameter 5 and the average waiting time is $1 / 5$. The same result holds if the first bus arriving is from line B. Thus the average waiting time is $1 / 5$.
Possible different interpretation. If you think there is only one bus for each line than the waiting time will be, again due to loss of memory,

$$
\frac{1}{3} \mathbb{P}\left(T_{A}<T_{B}\right)+\frac{1}{2} \mathbb{P}\left(T_{B}<T_{A}\right)
$$

We have

$$
\begin{aligned}
\mathbb{P}\left(T_{A}<T_{B}\right)= & 6 \int_{t_{A}<t_{B}} e^{-2 t_{A}-3 t_{B}} d t_{A} d t_{B}= \\
& 6 \int_{0}^{\infty} d t_{A} \int_{t_{A}}^{\infty} d t_{B} e^{-2 t_{A}-3 t_{B}}=2 \int_{0}^{\infty} e^{-5 t_{A}} d t_{A}=\frac{2}{5}
\end{aligned}
$$

so that

$$
\mathbb{P}\left(T_{B}<T_{A}\right)=\frac{3}{5}
$$

and the average waiting time is $13 / 30$.

Useful Formulas

- Exponential Distribution: if T is an exponential r.v. with parameter λ then its density function is

$$
f(t)=\left\{\begin{array}{lc}
\lambda e^{-\lambda t} & \text { if } \\
0 & \text { otherwise }
\end{array} \quad t \geq 0\right.
$$

while $E(T)=1 / \lambda$ and $F(x)=P(X \leq x)=1-e^{-\lambda x}$.

