No books or notes allowed. No laptop or wireless devices allowed. Show all your work for full credit. Write clearly and legibly.

Name (print):

Question:	1	2	3	Total
Points:	75	15	30	120
Score:				

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y\\ 0 & \text{otherwise.} \end{cases}$$

(a) (15 points) Find the marginal density functions $f_X(x)$ and $f_Y(y)$.

Solution: We have

$$f_X(x) = \int_x^\infty e^{-y} dy = e^{-x} \quad \text{if } x > 0$$

while

$$f_Y(y) = \int_0^y e^{-y} dx = y e^{-y}$$
 if $y > 0$

(b) (15 points) Find the conditional density functions $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$.

Solution: We have

$$f_{X|Y}(x|y) = \frac{e^{-y}}{ye^{-y}} = \frac{1}{y}$$
 if $0 < x < y$

while

$$f_{Y|X}(y|x) = \frac{e^{-y}}{e^{-x}} = e^{-(y-x)}$$
 if $0 < x < y$.

(c) (15 points) Find the expectation $\mathbb{E}(X|Y=y)$ of X given Y=y.

Solution: Since the density $f_{X|Y}(x|y)$ is uniform in [0, y] we get that

$$\mathbb{E}(X|Y) = \frac{y}{2}$$

(d) (15 points) Let now U = X and V = Y - X. Find the joint density function $F_{U,V}(u, v)$ of U and V.

Solution: Inverting we get X = U and Y = U + V. Since the Jacobian of the change of variable is 1 we get

$$f_{U,V}(u,v) = \begin{cases} e^{-(u+v)} & u, v > 0\\ 0 & \text{otherwise.} \end{cases}$$

Midterm 2

(e) (15 points) Are X and Y independent? What about U and V?

Solution: Since $f_{X|Y}(x|y)$ depends explicitly on y, X and Y are not independent.

Clearly we have

$$f_{U,V}(u,v) = f_U(u)f_V(v)$$

where

$$f_U(u) = e^{-u}$$

$$f_V(v) = e^{-v}$$

so that U and V are independent.

$$\mathbb{P}\left(X \le \tilde{x}_{\frac{1}{2}}\right) = \frac{1}{2}$$

and $\tilde{x}_{\frac{3}{4}}$, the *(upper)–quartile*, be defined as

$$\mathbb{P}\left(X \le \tilde{x}_{\frac{3}{4}}\right) = \frac{3}{4}.$$

Assume now that X is an exponential r.v. Show that

$$\tilde{x}_{\frac{3}{4}} = 2\tilde{x}_{\frac{1}{2}}.$$

Solution: We have	$F_{\rm er}(x) = 1 - e^{-\lambda x}$
	$\Gamma_X(x) = 1 - e$
so that $\tilde{x}_{\frac{1}{2}}$ satisfies	
2	$e^{-\lambda \tilde{x}_{\frac{1}{2}}} - \frac{1}{2}$
	$c = \frac{1}{2} - \frac{1}{2}$
and similarly \tilde{x}_3 satisfies	
$\frac{1}{4}$	ν <i>π</i> 1
	$e^{-\lambda x_{\frac{3}{4}}} = \frac{1}{4}.$
	4
Thus	
	$e^{-\lambda 2 \tilde{x}_{\frac{1}{2}}} = \left(e^{-\lambda \tilde{x}_{\frac{1}{2}}}\right)^2 = e^{-\lambda \tilde{x}_{\frac{3}{4}}}$

- - (a) (15 points) Find the distribution of the waiting time T till the arrival of the next useful bus. (**Hint**: Observe that $T = \min\{T_A, T_B\}$. Compute $\mathbb{P}(T > t)$.)

Solution: Clearly we have

$$T = \min\{T_A, T_B\}$$

so that

$$\begin{split} \mathbb{P}(T > t) = \mathbb{P}(\min\{T_A, T_B\} > t) = \mathbb{P}(T_A > t \& T_B > t) = \\ \mathbb{P}(T_A > t)\mathbb{P}(T_B > t) = e^{-5t} \end{split}$$

Thus

$$F(t) = \mathbb{P}(T < t) = 1 - e^{-5t}$$

so that T is an exponential with parameter 5.

${\rm Midterm}\ 2$

(b) (15 points) The first bus that passes is full and you cannot take it. How long will you have to wait, in average, till the next bus arrives? Justify your answer.

Solution: Natural interpretation. Assume that the first bus arriving is from line A. Then another bus from line A will arrive in a time T_A with exponential distribution with parameter 2. The waiting time for the arrival of a bus from line B is still an exponential distribution with parameter 3 due to the loss of memory property of the exponential distribution. Thus the waiting time is again exponentially distributed with parameter 5 and the average waiting time is 1/5. The same result holds if the first bus arriving is from line B. Thus the average waiting time is 1/5.

Possible different interpretation. If you think there is only one bus for each line than the waiting time will be, again due to loss of memory,

$$\frac{1}{3}\mathbb{P}(T_A < T_B) + \frac{1}{2}\mathbb{P}(T_B < T_A).$$

We have

$$\mathbb{P}(T_A < T_B) = 6 \int_{t_A < t_B} e^{-2t_A - 3t_B} dt_A dt_B = 6 \int_0^\infty dt_A \int_{t_A}^\infty dt_B e^{-2t_A - 3t_B} = 2 \int_0^\infty e^{-5t_A} dt_A = \frac{2}{5}$$

so that

$$\mathbb{P}(T_B < T_A) = \frac{3}{5}$$

and the average waiting time is 13/30.

Useful Formulas

• Exponential Distribution: if T is an exponential r.v. with parameter λ then its density function is

 $f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if} \quad t \ge 0\\ 0 & \text{otherwise} \end{cases}$

while $E(T) = 1/\lambda$ and $F(x) = P(X \le x) = 1 - e^{-\lambda x}$.