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No books or notes allowed. No laptop or wireless devices allowed. Show all your
work for full credit. Write clearly and legibly.
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Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 point
Let X and Y be two jointly continuous r.v. with density function

f(x, y) =

{
e−y 0 < x < y

0 otherwise.

(a) (15 points) Find the marginal density functions fX(x) and fY (y).

Solution: We have

fX(x) =

∫ ∞
x

e−ydy = e−x if x > 0

while

fY (y) =

∫ y

0

e−ydx = ye−y if y > 0.

(b) (15 points) Find the conditional density functions fX|Y (x|y) and fY |X(y|x).

Solution: We have

fX|Y (x|y) =
e−y

ye−y
=

1

y
if 0 < x < y

while

fY |X(y|x) =
e−y

e−x
= e−(y−x) if 0 < x < y.
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(c) (15 points) Find the expectation E(X|Y = y) of X given Y = y.

Solution: Since the density fX|Y (x|y) is uniform in [0, y] we get that

E(X|Y ) =
y

2

(d) (15 points) Let now U = X and V = Y − X. Find the joint density function
FU,V (u, v) of U and V .

Solution: Inverting we get X = U and Y = U + V . Since the Jacobian of the
change of variable is 1 we get

fU,V (u, v) =

{
e−(u+v) u, v > 0

0 otherwise.
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(e) (15 points) Are X and Y independent? What about U and V ?

Solution: Since fX|Y (x|y) depends explicitly on y, X and Y are not indepen-
dent.

Clearly we have
fU,V (u, v) = fU(u)fV (v)

where

fU(u) = e−u

fV (v) = e−v

so that U and V are independent.
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Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 point
Given a continuous r.v. X let x̃ 1

2
, the median, be defined as

P
(
X ≤ x̃ 1

2

)
=

1

2

and x̃ 3
4
, the (upper)–quartile, be defined as

P
(
X ≤ x̃ 3

4

)
=

3

4
.

Assume now that X is an exponential r.v. Show that

x̃ 3
4

= 2x̃ 1
2
.

Solution: We have
FX(x) = 1− e−λx

so that x̃ 1
2

satisfies

e
−λx̃ 1

2 =
1

2

and similarly x̃ 3
4

satisfies

e
−λx̃ 3

4 =
1

4
.

Thus

e
−λ2x̃ 1

2 =
(
e
−λx̃ 1

2

)2
= e

−λx̃ 3
4 .
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Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 point
You are waiting for the bus at a bus station. To go home you can take two bus lines:
line A or line B. The waiting time for the next line A bus is described by an exponential
r.v. TA with parameter 2 while the waiting time for the next line B bus is described by
an exponential r.v. TB with parameter 3. Finally TA and TB are independent.

(a) (15 points) Find the distribution of the waiting time T till the arrival of the next
useful bus. (Hint: Observe that T = min{TA, TB}. Compute P(T > t).)

Solution: Clearly we have

T = min{TA, TB}

so that

P(T > t) =P(min{TA, TB} > t) = P(TA > t & TB > t) =

P(TA > t)P(TB > t) = e−5t

Thus
F (t) = P(T < t) = 1− e−5t

so that T is an exponential with parameter 5.
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(b) (15 points) The first bus that passes is full and you cannot take it. How long will
you have to wait, in average, till the next bus arrives? Justify your answer.

Solution: Natural interpretation. Assume that the first bus arriving is from
line A. Then another bus from line A will arrive in a time TA with exponential
distribution with parameter 2. The waiting time for the arrival of a bus from
line B is still an exponential distribution with parameter 3 due to the loss of
memory property of the exponential distribution. Thus the waiting time is again
exponentially distributed with parameter 5 and the average waiting time is 1/5.
The same result holds if the first bus arriving is from line B. Thus the average
waiting time is 1/5.

Possible different interpretation. If you think there is only one bus for each line
than the waiting time will be, again due to loss of memory,

1

3
P(TA < TB) +

1

2
P(TB < TA).

We have

P(TA < TB) =6

∫
tA<tB

e−2tA−3tBdtA dtB =

6

∫ ∞
0

dtA

∫ ∞
tA

dtBe
−2tA−3tB = 2

∫ ∞
0

e−5tAdtA =
2

5

so that

P(TB < TA) =
3

5

and the average waiting time is 13/30.
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Useful Formulas

• Exponential Distribution: if T is an exponential r.v. with parameter λ then its
density function is

f(t) =

{
λe−λt if t ≥ 0
0 otherwise

while E(T ) = 1/λ and F (x) = P (X ≤ x) = 1− e−λx.
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