1) The equation governing the temperature $u(x, t)$ inside a rod is:

$$
\left\{\begin{aligned}
\frac{\partial u(x, t)}{\partial t} & =\frac{\partial^{2} u(x, t)}{\partial x^{2}} \quad 0 \leq x \leq 1 \\
\frac{\partial u(0, t)}{\partial x} & =r u(0, t) \\
\frac{\partial u(1, t)}{\partial x} & =r(T-u(1, t)) \\
u(x, 0) & =x
\end{aligned}\right.
$$

a) write and solve the equation for the steady state $v(x)$.

The equation for the steady state is:

$$
\left\{\begin{aligned}
\frac{\partial^{2} u(x, t)}{\partial x^{2}} & =0 \\
\frac{\partial v(0)}{\partial x} & =r v(0) \\
\frac{\partial v(1)}{\partial x} & =r(T-v(1))
\end{aligned}\right.
$$

The general solution is still $v(x)=a x+b$. The first b.c. tells me that $a=r b$ while the second tells me that $a=r(T-a-b)$ or, using the other, $a=r(T-a-a / r)$ from which we get

$$
a=\frac{r T}{2+r} \quad b=\frac{T}{2+r}
$$

b) write the equation for the difference $w(x, t)=u(x, t)-v(x)$.

The equation for w is the homogeous version of that for u so that:

$$
\left\{\begin{aligned}
\frac{\partial w(x, t)}{\partial t} & =\frac{\partial^{2} w(x, t)}{\partial x^{2}} \quad 0 \leq x \leq 1 \\
\frac{\partial w(0, t)}{\partial x} & =r w(0, t) \\
\frac{\partial w(1, t)}{\partial x} & =-r w(1, t) \\
u(x, 0) & =\left(1-\frac{r T}{2+r}\right) x-\frac{T}{2+r}
\end{aligned}\right.
$$

c) use separation of variable to reduce the problem to a Sturm-Luiville problem. Find the eigenvalues and eigenfunctions. Explain why you can expand in eigenfunctions. Write the general solution for $w(x, t)$ and an expression for the coefficient in term of $w(x, 0)$.

Writing $w(x, t)=T(t) s(x)$ we get the equation

$$
\left\{\begin{aligned}
\frac{\partial T(t)}{\partial t} & =\mu T(t) \\
\frac{\partial^{2} s(x)}{\partial x^{2}} & =\mu s(x) \\
s^{\prime}(0)-r s(0) & =0 \\
s^{\prime}(1)+r s(1) & =0
\end{aligned}\right.
$$

Observe that the Theorem on section 2.8 tells you that all μ are non negative so that I can write $\mu=-\lambda^{2}$. The general solution of the equation for $s(x)$ is $s(x)=a \cos (\lambda x)+b \sin (\lambda x)$ so that $s^{\prime}(x)=-a \lambda \sin (\lambda x)+b \lambda \cos (\lambda x)$. The first b.c. tells me $r a=\lambda b$ and the second tells me

$$
\lambda b \cos (\lambda)+r b \sin (\lambda)=\frac{\lambda^{2}}{r} b \sin (\lambda)-b \lambda \cos (\lambda x)
$$

that gives

$$
\tan (\lambda)=\frac{2 r \lambda}{\lambda^{2}-r^{2}}
$$

Observe that

$$
\lim _{\lambda \rightarrow \infty} \frac{2 r \lambda}{\lambda^{2}-r^{2}}=0
$$

so that we have infinitely many solution λ_{n} and $\lim _{n \rightarrow \infty} \lambda_{n}=n \pi$. Finally we get

$$
s_{n}(x)=\lambda_{n} \cos \left(\lambda_{n} x\right)+r \sin \left(\lambda_{n} x\right)
$$

From the general theory we know that the $s_{n}(x)$ are orthogonal because they are the eigenvalue of a regular Sturm-Luoiville problem. Setting:

$$
c_{n}=\int_{0}^{1} s_{n}^{2}(x) d x
$$

We have, for every function $f(x)$, that

$$
f(x)=\sum a_{n} s_{n}(x)
$$

where

$$
a_{n}=\int_{0}^{1} f(x) s_{n}(x) d x
$$

So we obtain that the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n}^{2} t} s_{n}(x)
$$

and setting

$$
a_{n}=\frac{1}{c_{n}} \int_{0}^{1}\left[\left(1-\frac{r T}{2+r}\right) x-\frac{T}{2+r}\right] s_{n}(x) d x
$$

we obtain a solution for our problem.
e) Give an estimate from above and below of the first eigenvalue. How long do you have to wait to be sure that $|w(x, t)| \leq 10^{-3}$. Use only the series truncated at the first term but observe that you need an estimate of the first coefficient.

Observe that the function

$$
g(\lambda)=\frac{2 r \lambda}{\lambda^{2}-r^{2}}
$$

is negative for for $\lambda \leq r$ and positive after. Moreover $\lim _{\lambda \rightarrow r-}=-\infty$ and $\lim _{\lambda \rightarrow r+}=$ $+\infty$. Finally $g(0)=0$. This implies that if $0<r<\pi / 2$ than $r<\lambda_{1}<\pi / 2$, otherwise $\pi / 2<\lambda_{1}<\pi$. Writing the truncated solution we have

$$
w(x, t) \simeq a_{1} e^{-\lambda_{1}^{2} t} s_{1}(x)
$$

Observe that $\left|s_{1}(x)\right| \leq \lambda_{1}+r$ so that we have to find t such that

$$
\left|a_{1}\right| e^{-\lambda_{1}^{2} t}\left(\lambda_{1}+r\right) \leq 10^{-3}
$$

that is

$$
t>\frac{\ln \left(1000\left(r+\lambda_{1}\right)\left|a_{1}\right|\right)}{\lambda_{1}}
$$

f) Bonus: write the solution of the problem. Remember that

$$
\begin{aligned}
& \int x \cos (\lambda x) d x=\frac{\cos (\lambda x)}{\lambda^{2}}+\frac{x \sin (\lambda x)}{\lambda} \\
& \int x \sin (\lambda x) d x=\frac{\sin (\lambda x)}{\lambda^{2}}-\frac{x \cos (\lambda x)}{\lambda}
\end{aligned}
$$

We have to compute

$$
\int_{0}^{1} s_{n}(x) d x=\int_{0}^{1}\left(\lambda_{n} \cos \left(\lambda_{n} x\right)+r \sin \left(\lambda_{n} x\right)\right) d x=\sin \left(\lambda_{n}\right)-r \frac{\cos \left(\lambda_{n}\right)-1}{\lambda_{n}}=d_{n}
$$

and

$$
\begin{aligned}
\int_{0}^{1} x s_{n}(x) d x & =\int_{0}^{1}\left(\lambda_{n} x \cos \left(\lambda_{n} x\right)+r x \sin \left(\lambda_{n} x\right)\right) d x= \\
& =\left.\left(\frac{\cos \left(\lambda_{n} x\right)}{\lambda_{n}}+x \sin \left(\lambda_{n} x\right)+\frac{r \sin \left(\lambda_{n} x\right)}{\lambda_{n}^{2}}-\frac{r x \cos \left(\lambda_{n} x\right)}{\lambda_{n}}\right)\right|_{0} ^{1}= \\
& =\frac{1-r}{\lambda_{n}} \cos \lambda_{n}+\left(1+\frac{r}{\lambda_{n}^{2}}\right) \sin \lambda_{n}-\frac{1}{\lambda_{n}}=e_{n}
\end{aligned}
$$

Finally we have

$$
\begin{aligned}
c_{n} & =\int_{0}^{1}\left(\frac{\lambda_{n}^{2}-r^{2}}{2} \cos \left(2 \lambda_{n} x\right)+\frac{\lambda_{n}^{2}+r^{2}}{2}+r \lambda_{n} \sin \left(2 \lambda_{n} x\right)\right) d x= \\
& =\frac{r^{2} \lambda_{n}^{2}-1}{2 \lambda_{n}} \sin \left(2 \lambda_{n}\right)-r\left(\cos \left(2 \lambda_{n}\right)-1\right)+\frac{r^{2} \lambda_{n}^{2}+1}{2}
\end{aligned}
$$

so that

$$
a_{n}=\left(1-\frac{r T}{2+r}\right) \frac{e_{n}}{c_{n}}-\frac{T}{2+r} \frac{d_{n}}{c_{n}}
$$

2) Let $f(x)$ a continuous and differentiable function defined for all x. Assume that

$$
|f(x)| \leq C e^{-\lambda|x|}
$$

with C and λ positive. Finally let

$$
\begin{equation*}
\hat{f}(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} f(x) d x \tag{1}
\end{equation*}
$$

Consider now the function

$$
F(x)=\sum_{n=-\infty}^{\infty} f(x+n L)
$$

with $L>0$.
a) Show that $F(x)$ exists and it is periodic of period L.

Observe that

$$
\begin{aligned}
F(x+L) & =\sum_{n=-\infty}^{\infty} f(x+L+n L)= \\
& =\sum_{n=-\infty}^{\infty} f(x+(n+1) L)=\sum_{m=-\infty}^{\infty} f(x+m L)=F(x)
\end{aligned}
$$

so that $F(x)$ is periodic of period L. Let now $0<x<L$. We have

$$
F(x)=\sum_{n=-\infty}^{\infty} f(x+n L) \leq C \sum_{n=-\infty}^{\infty} e^{-\lambda|x+n L|} \leq C e^{\lambda x} \sum_{n=-\infty}^{\infty} e^{-\lambda|n| L}<+\infty
$$

where we used that $|x+n L| \geq|n L|-|x|$ so that

$$
e^{-\lambda|x+n L|} \leq e^{\lambda x} e^{-\lambda|n L|}
$$

b) Let

$$
F(x)=\sum c_{n} e^{i \frac{2 n \pi}{L} x}
$$

Find the coefficients c_{n}. (Hint: write an expression for c_{n} as a sum of integrals and than change variable $y=x+n L$ and ...)

$$
\begin{aligned}
c_{m} & =\frac{1}{L} \int_{0}^{L} e^{-i \frac{2 n \pi}{L} x} F(x) d x=\frac{1}{L} \sum_{n=-\infty}^{\infty} \int_{0}^{L} e^{-i \frac{2 n \pi}{L} x} f(x+n L) d x= \\
& =\frac{1}{L} \sum_{n=-\infty}^{\infty} \int_{n L}^{(n+1) L} e^{-i \frac{2 n \pi}{L}(y-n L)} f(y) d y=\frac{1}{L} \int_{-\infty}^{\infty} e^{-i \frac{2 n \pi}{L} y} f(y) d y= \\
& =\hat{f}\left(-\frac{2 n \pi}{L}\right)
\end{aligned}
$$

