No books or notes allowed. No laptop or wireless devices allowed. Show all your work for full credit. Write clearly and legibly.

Name: \qquad

Question:	1	2	3	4	Total
Points:	55	0	15	30	100
Score:					

Question:	1	2	3	4	Total
Bonus Points:	0	10	10	0	20
Score:					

Question 1
Let $f(x)$ be the periodic function of period π given by:

$$
f(x)=x \cos x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} .
$$

and extended periodically to all \mathbb{R}.
(a) (10 points) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution:

Clearly we have

$$
f^{\prime}(x)=\cos (x)-x \sin (x) \quad f^{\prime \prime}(x)=-2 \sin (x)-x \cos (x)
$$

(b) (15 points) Are f, f^{\prime} and $f^{\prime \prime}$, piecewise continuous? continuous? piecewise smooth? (Justify your answer.)

Solution: Since

$$
f\left(-\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)=0
$$

we have that f is continuous. Observe that

$$
f^{\prime}\left(-\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}
$$

so that also f^{\prime} is continuos. Moreover we have

$$
f^{\prime \prime}\left(-\frac{\pi}{2}\right)=-f^{\prime \prime}\left(\frac{\pi}{2}\right)=-2
$$

so that $f^{\prime \prime}$ is only sectionally continuous. Finally $f^{\prime \prime \prime}$ exists and is continuous everywhere but for $\pi / 2$ so that $f^{\prime \prime}$ is sectionally smooth.
(c) (15 points) Compute the Fourier series for f, f^{\prime} and $f^{\prime \prime}$ and discuss their convergence. (Remember that

$$
\sin a \cos b=(\sin (a+b)+\sin (a-b)) / 2
$$

and

$$
\left.\int x \sin (a x) d x=-\frac{x \cos (a x)}{a}+\frac{\sin (a x)}{a^{2}}+C .\right)
$$

Solution:

Clearly $f(x)=-f(-x)$ so that the F.S. contains only the sine terms. We have

$$
\begin{aligned}
b_{n} & =\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} x \cos (x) \sin (2 n x) d x= \\
& =\frac{2}{\pi}\left(\int_{0}^{\frac{\pi}{2}} x \sin ((2 n+1) x) d x+\int_{0}^{\frac{\pi}{2}} x \sin ((2 n-1) x) d x\right)= \\
& =\frac{2}{\pi}\left(\frac{(-1)^{n}}{(2 n+1)^{2}}+\frac{-(-1)^{n}}{(2 n-1)^{2}}\right)=\frac{16(-1)^{n-1} n}{\pi\left(4 n^{2}-1\right)^{2}}
\end{aligned}
$$

Since $b_{n}=O\left(n^{-3}\right)$ we have that the F.S. for f converges uniformly and

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (2 n x)
$$

Thus we get that

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} 2 n b_{n} \cos (2 n x)
$$

with $n b_{n}=O\left(n^{-2}\right)$ so that also the F.S. for f^{\prime} converges uniformly. Finally

$$
f^{\prime \prime}(x)=-\sum_{n=1}^{\infty} 4 n^{2} b_{n} \sin (2 n x)
$$

with $n^{2} b_{n}=O\left(n^{-1}\right)$. We can conclude that the F.S. for $f^{\prime \prime}$ converges pointwise since $f^{\prime \prime}$ is sectionally smooth.
(d) (15 points) Let $g(x)$ be the periodic function of period π given by:

$$
g(x)=\sin x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

and extended periodically to all \mathbb{R}. Use the results of point (c) to find the Fourier series of g without doing integrals. (Hint: write g as a linear combination of f, f^{\prime}, and $f^{\prime \prime}$.)

Solution: Observe that

$$
g(x)=-\frac{f^{\prime \prime}(x)+f(x)}{2}
$$

so that

$$
g(x)=\frac{1}{2} \sum_{n=1}^{\infty}\left(4 n^{2}-1\right) b_{n} \sin (n x)=\sum_{n=1}^{\infty} \frac{8(-1)^{n-1} n}{\pi\left(4 n^{2}-1\right)} \sin (n x)
$$

2. (10 points (bonus)) Consider the heat equation for a rod of length l and heat conductivity κ :

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(x, t)=\kappa \frac{d^{2}}{d x^{2}} u(x, t) \\
u(0, t)=T_{0} \quad \quad u(l, t)=T_{1} \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

If $u(x, t)$ is a solution of the above equation, set

$$
x=l y \quad t=\frac{l^{2}}{\kappa} s
$$

and

$$
v(y, s)=u\left(l y, \frac{l^{2}}{\kappa} s\right) .
$$

Write an equation for $v(y, s)$, including boundary condition and initial condition. (Hint: compute $d v(y, s) / d s$ and $d^{2} v(y, s) / d y^{2}$ in term of $d u(x, t) / d t$ and $d^{2} u(x, t) / d x^{2}$ and use the heat equation.)

Solution: We have

$$
\begin{aligned}
\frac{d}{d s} v(y, s) & =\frac{d}{d s} u\left(l y, \frac{l^{2}}{\kappa} s\right)=\frac{l^{2}}{\kappa} \dot{u}(x, t) \\
\frac{d^{2}}{d y^{2}} v(y, s) & =\frac{d^{2}}{d y^{2}} u\left(l y, \frac{l^{2}}{\kappa} s\right)=l^{2} u^{\prime \prime}(x, t)
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& v(0, s)=u\left(0, \frac{l^{2}}{\kappa} s\right)=T_{0} \\
& v(1, s)=u\left(l, \frac{l^{2}}{\kappa} s\right)=T_{1} \\
& v(y, 0)=u(l y, 0)=u_{0}(l y)
\end{aligned}
$$

so that v satisfies

$$
\left\{\begin{array}{l}
\frac{d}{d s} v(y, s)=\frac{d^{2}}{d y^{2}} v(y, s) \\
v(0, s)=T_{0} \quad v(1, s)=T_{1} \\
v(y, 0)=u_{0}(l y)
\end{array}\right.
$$

Question 3
Let $f(x)$ be the function defined by the Fourier series:

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin (n x)
$$

Answer the following questions.
(a) (15 points) Does the Fourier series for f converge uniformly? Is f continuous? (Hint: how big is $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$?)

Solution: Yes to both. Indeed we have that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

and thus, due to Theorem 1, the series converge uniformly to a continuous function.
(b) (10 points (bonus)) Is $f(x)$ sectionally smooth? That is, is $f^{\prime}(x)$ sectionally continuous? (Hint: try to compute $f^{\prime}(0)$.)

Solution: Observe that $f^{\prime}(x)$, if it exists, must be given by

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n} \cos (n x)
$$

so that

$$
f^{\prime}(0)=\sum_{n=1}^{\infty} \frac{1}{n}=\infty .
$$

This implies that, if $f^{\prime}(x)$ exists, it cannot be sectionally continuous so that $f(x)$ is not sectionally smooth.

Question 4 30 point
The extremities of a rod of length a are kept at constant temperatures T_{0} and T_{1} while along its length it is in convective contact with a medium at a temperature that varies linearly between T_{0} and T_{1}. This means that the temperature of the rod is governed by the equation:

$$
\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}-h(u(x, t)-T(x)) \quad 0 \leq x \leq a \tag{1}\\
u(0, t)=T_{0} \\
u(a, t)=T_{1} \\
u(x, 0)=\frac{T_{1}+T_{0}}{2}
\end{array}\right.
$$

where

$$
T(x)=T_{0}+\frac{T_{1}-T_{0}}{a} x .
$$

and $h>0$.
(a) (15 points) Write and solve the equation for the steady state $\bar{u}(x)$ of the rod. (Hint: observe that $T(x)$ is a linear function that satisfies the boundary conditions.)

Solution: The equation for the steady state is:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} \bar{u}(x)}{\partial x^{2}}=h(\bar{u}(x)-T(x)) \quad 0 \leq x \leq a \tag{2}\\
\bar{u}(0)=T_{0} \\
\bar{u}(a)=T_{1}
\end{array}\right.
$$

It is easy to find a particular solution for the non-homogenous equation:

$$
\bar{u}(x)=T_{0}+\frac{T_{1}-T_{0}}{a} x .
$$

Since this solution satisfies the b.c. it is the steady state.
(b) (15 points) Write the equation for the deviation $w(x, t)=u(x, t)-\bar{u}(x)$.

Solution:

The equation for the diviations is:

$$
\left\{\begin{array}{l}
\frac{\partial w(x, t)}{\partial t}=\frac{\partial^{2} w(x, t)}{\partial x^{2}}-h w(x, t) \quad 0 \leq x \leq a \tag{3}\\
w(0, t)=0 \\
w(a, t)=0 \\
w(x, 0)=\frac{T_{1}-T_{0}}{2}-\frac{T_{1}-T_{0}}{a} x
\end{array}\right.
$$

