No books or notes allowed. No laptop or wireless devices allowed. Show all your work for full credit. Write clearly and legibly.

Name: \qquad

Question:	1	2	Total
Points:	70	30	100
Score:			

Question:	1	2	Total
Bonus Points:	15	10	25
Score:			

Question 1.. 70 point
An electric wire of lenght 1 and varying cross section $\rho(x)$ is traversed by a current I. At the left end it is insulated while at the right it is kept at constant temperature T_{0}. The equation governing its temperature is thus

$$
\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}+\rho(x, t) I^{2} \quad 0 \leq x \leq 1 \tag{1}\\
u^{\prime}(0, t)=0 \\
u(1, t)=T_{0} \\
u(x, 0)=T_{0}
\end{array}\right.
$$

where T_{0} is a constant.
(a) (20 points) Write the equation for the steady state $\bar{u}(x)$ of the rod. Show that a particular solution of the steady state equation is:

$$
\bar{u}_{p}(x)=I^{2} \int_{0}^{x}(y-x) \rho(y) d y .
$$

Write the general solution and find the steady state.
Solution: The equation for the staedy state is

$$
\left\{\begin{array}{l}
\frac{d^{2} u(x, t)}{d x^{2}}+\rho(x, t) I^{2}=0 \quad 0 \leq x \leq 1 \tag{2}\\
u^{\prime}(0, t)=0 \\
u(1, t)=T_{0}
\end{array}\right.
$$

Observe now that

$$
\frac{d}{d x} \bar{u}_{p}(x)=I^{2} \int_{0}^{x}(y-x) \rho(y) d y=-I^{2} \int_{0}^{x} \rho(y) d y
$$

so that

$$
\frac{d^{2}}{d x^{2}} \bar{u}_{p}(x)=-I^{2} \frac{d}{d x} \int_{0}^{x} \rho(y) d y=-I^{2} \rho(x) .
$$

Thus $\bar{u}_{p}(x)$ solves the equation so that the general solution is

$$
\bar{u}(x)=a+b x+\bar{u}_{p}(x)
$$

Observe that $u_{p}(0)=u_{p}^{\prime}(0)=0$ so that $b=0$ while

$$
a=T_{0}+I^{2} \int_{0}^{1}(1-y) \rho(y) d y
$$

(b) (15 points) Write the equation for the deviation $v(x, t)=u(x, t)-\bar{u}(x)$.

Solution: Clearly we get

$$
\left\{\begin{array}{l}
\frac{\partial v(x, t)}{\partial t}=\frac{\partial^{2} v(x, t)}{\partial x^{2}} \quad 0 \leq x \leq 1 \tag{3}\\
v^{\prime}(0, t)=0 \\
v(1, t)=0 \\
v(x, 0)=\bar{T}-\bar{u}_{p}(x)
\end{array}\right.
$$

where

$$
\bar{T}=-I^{2} \int_{0}^{1}(1-y) \rho(y) d y
$$

(c) (20 points) Use separation of variable to reduce the problem to a Sturm-Liouville problem. Find the eigenvalues and eigenfunctions.

Solution: Writing $v(x, t)=C(x) T(t)$ we get the usual equtions

$$
\begin{align*}
\dot{T}(t) & =-\lambda^{2} T(t) \tag{4}\\
C^{\prime \prime}(x) & =-\lambda^{2} C(x) \quad C^{\prime}(0)=C(1)=0 \tag{5}
\end{align*}
$$

The second equation give us

$$
C(x)=a \cos (\lambda x)+b \sin (\lambda x)
$$

where $C^{\prime}(0)=0$ implyes $b=0$ and $C(1)=0$ inplyes

$$
\cos \lambda=0
$$

that is

$$
\lambda=\left(n+\frac{1}{2}\right) \pi
$$

Thus eigenvalue and eigenfunction are

$$
\lambda_{n}=\left(n+\frac{1}{2}\right) \pi \quad C_{n}(x)=\cos \left(\lambda_{n} x\right)
$$

(d) (15 points) Write the general solution of the problem with an expression for the coefficients a_{n} needed to match the initial condition.

Solution: We thus get that

$$
u(x, t)=\bar{u}(x)+\sum_{i=1}^{\infty} a_{n} e^{-\lambda_{n}^{2} t} \cos \left(\lambda_{n} x\right)
$$

where

$$
a_{n}=\frac{\int_{0}^{1} \cos \left(\lambda_{n} x\right)\left(\bar{T}-\bar{u}_{p}(x)\right) d x}{\int_{0}^{1} \cos ^{2}\left(\lambda_{n} x\right) d x}
$$

(e) (15 points (bonus)) Assume that

$$
\rho(x)=\sum_{n=1}^{\infty} A_{n} \cos \left(\lambda_{n} x\right) .
$$

Compute the coefficients a_{n}.
Solution: Observe that

$$
\int_{0}^{1} \cos ^{2}\left(\lambda_{n} x\right) d x=\frac{1}{2}
$$

Thus we have

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \int_{0}^{1} \cos \left(\lambda_{n} x\right)\left(\bar{T}-\bar{u}_{p}(x)\right) d x= \\
& =\left.\frac{1}{2} \frac{\sin \left(\lambda_{n} x\right)}{\lambda_{n}}\left(\bar{T}-\bar{u}_{p}(x)\right)\right|_{0} ^{1}+\frac{1}{2 \lambda_{n}} \int_{0}^{1} \sin \left(\lambda_{n} x\right) \bar{u}_{p}^{\prime}(x) d x= \\
& =-\left.\frac{1}{2} \frac{\cos \left(\lambda_{n} x\right)}{\lambda_{n}^{2}} \bar{u}_{p}^{\prime}(x)\right|_{0} ^{1}+\frac{1}{2 \lambda_{n}^{2}} \int_{0}^{1} \cos \left(\lambda_{n} x\right) \bar{u}_{p}^{\prime \prime}(x) d x= \\
& =-\frac{I^{2}}{2 \lambda_{n}^{2}} \int_{0}^{1} \cos \left(\lambda_{n} x\right) \rho(x) d x=-\frac{I^{2} A_{n}}{2 \lambda_{n}^{2}}
\end{aligned}
$$

where we have used that $\bar{u}_{p}(1)=\bar{T}$ and $\bar{u}_{p}^{\prime}(0)=0$.

Question 2. 30 point
Consider the Sturm-Liouville problem for $0 \leq x \leq \pi^{2}$:

$$
\left(\sqrt{x} \phi^{\prime}(x)\right)^{\prime}=-\frac{\lambda^{2}}{4 \sqrt{x}} \phi(x) \quad \phi(0)=\phi\left(\pi^{2}\right)=0
$$

(a) (15 points) Show that the general solution of the above differential equation is:

$$
\phi(x)=a \cos (\lambda \sqrt{x})+b \sin (\lambda \sqrt{x}) .
$$

Use the boundary conditions to find eigenvalues and eigenfunctions.
Solution: Observe that

$$
\phi^{\prime}(x)=-a \frac{\lambda}{2 \sqrt{x}} \sin (\lambda \sqrt{x})+b \frac{\lambda}{2 \sqrt{x}} \cos (\lambda \sqrt{x})
$$

so that

$$
\left(\sqrt{x} \phi^{\prime}(x)\right)^{\prime}=-a \frac{\lambda^{2}}{4 \sqrt{x}} \cos (\lambda \sqrt{x})-b \frac{\lambda^{2}}{4 \sqrt{x}} \sin (\lambda \sqrt{x})=-\frac{\lambda^{2}}{4 \sqrt{x}} \phi(x) .
$$

From $\phi(0)=0$ we get $a=0$ while $\phi\left(\pi^{2}\right)=0$ gives

$$
\sin (\lambda \pi)=0
$$

so that $\lambda_{n}=n$ and

$$
\phi_{n}(x)=\sin (n \sqrt{x}) .
$$

(b) (15 points) We know that we can write \sqrt{x} as

$$
\sqrt{x}=\sum_{i=0}^{\infty} a_{n} \phi_{n}(x)
$$

Write an expression for the coefficients a_{n}.
Solution: From orthogonality we know that

$$
\int_{0}^{\pi^{2}} \sin (n \sqrt{x}) \sin (m \sqrt{x}) \frac{d x}{\sqrt{x}}=0 \quad \text { if } \quad n \neq m
$$

Thus we get

$$
a_{n}=\frac{\int_{0}^{\pi^{2}} \sin (n \sqrt{x}) d x}{\int_{0}^{\pi^{2}} \sin ^{2}(n \sqrt{x}) \frac{d x}{\sqrt{x}}}
$$

(c) (10 points (bonus)) Compute the coefficients a_{n}.

Solution: By changing variable $y=\sqrt{x}$ we get

$$
a_{n}=\frac{\int_{0}^{\pi} \sin (n y) y d y}{\int_{0}^{\pi} \sin ^{2}(n y) d y}=\frac{2}{\pi}\left(\left.y \frac{\cos (n y)}{n}\right|_{0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \cos (n y) d y\right)=\frac{2(-1)^{n}}{n \pi}
$$

