Fall 04
Math 4581

Name:
Test 1

1) The two extremities of a rod are kept at constant teperatures T_{0} and T_{1} while along its length it is in convective contact with a media at a temperature that varies linearly between T_{0} and T_{1} form 0 to a. This mean that the temperature of the rod is governed by the equation:

$$
\left\{\begin{aligned}
\frac{\partial u(x, t)}{\partial t} & =\frac{1}{k} \frac{\partial^{2} u(x, t)}{\partial x^{2}}-h(u(x, t)-T(x)) \quad 0 \leq x \leq a \\
u(0, t) & =T_{0} \\
u(a, t) & =T_{1} \\
u(x, 0) & =\frac{T_{1}+T_{0}}{2}
\end{aligned}\right.
$$

where

$$
T(x)=T_{0}+\frac{T_{1}-T_{0}}{a} x
$$

and the initial temperature is assumed constant.
a) Find the temperature of the $\operatorname{rod} u(x, t)$ as a function of t, i.e. solve the above equation.
b) Compute

$$
d(t)^{2}=\int_{0}^{a}(u(x, t)-v(x))^{2} d x
$$

where $v(x)$ is the steady state solution. (Hint: use Parseval's identity.)
c) Call "realxation time" the time \bar{t} such that $d(\bar{t})=d(0) / 2$. Can you find a upper bound for \bar{t} ? How does the relaxation time depend on h ? (Hint: use that $-\lambda_{n}^{2} t \leq-\lambda_{1}^{2} t$ to estimate the exponentials in $\left.d(t)\right)$
2) You hold the extremity of a semi-infinite string in your hand. The string is initially at rest. At time $t=0$ you move it up at speed 1 for 0.25 seconds and then you move it down at speed 1 for 0.25 seconds. After time $t=0.5$ second you hold it fixed at 0 . This mean that the string is governed by the equation:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{\partial^{2} u(x, t)}{\partial x^{2}} \\
u(0, t)=h(t) \\
u(x, 0)=0 \\
\frac{\partial u(x, 0)}{\partial t}=0
\end{array}\right.
$$

where

$$
h(t)= \begin{cases}t & 0<t<0.25 \\ 0.5-t & 0.25<t<0.5 \\ 0 & t>0.5\end{cases}
$$

We have assumed that the sound speed $c=1$.
a) Use D'Alembert scheme to write the solution for every time $t>0$.
b) Suppose now that the string has finite length $l=2$. Write the solution for every time $t>0$. (Hint: compute the state of the string at time $t=0.5$ second and use it as initial condition to solve the wave equation with fixed extremities.)
c) Write and sketch $u(x, t)$ for $t=3.25$ and $t=4.25$ seconds. You may be able to do this without solving the point b).
3) A string of length 1 satisfy the wave equation, i.e. its displacement $u(x, t)$ satisfies:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}} \\
u(0, t)=u(1, t)=0 \\
u(x, 0)=0 \\
\frac{\partial u(x, 0)}{\partial t}=\epsilon g(x)
\end{array}\right.
$$

where the initail conditions $f(x)$ and $g(x)$ are given by:

$$
g(x)= \begin{cases}\frac{1}{b} x & x<b \\ \frac{1}{1-b}(1-x) & x>b\end{cases}
$$

a) The energy $E(t)$ of the string is given by:

$$
E(t)=\int_{0}^{1}\left(\partial_{t} u(x, t)^{2}+\partial_{x} u(x, t)^{2}\right) d x
$$

Compute the energy of the string $E(t)$ for all $t>0$.
b) Compute the solution using Fourier series.
c) Suppose now that the string is subject to an harmonic restoring force, i.e. it satisfies the equation

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}+\omega^{2} u(x, t) \\
u(0, t)=u(1, t)=0 \\
u(x, 0)=0 \\
\frac{\partial u(x, 0)}{\partial t}=\epsilon g(x)
\end{array}\right.
$$

for a given ω. How will the previous solution change? (Hint: Use separation of variables and keep the ω term in the time equation. Differently you can write the solution $u(x, t)$ as sine Fourier series for every t and find an equation for the coefficients.)
d) Bonus: can you write an energy $E(t)$ for this new equation such that $\dot{E}(t)=0$?
4) A rod of lenght a get a constant flux of heat Φ at one end and is in convective contact with a fluid at temperature T at the other end. Thus, the equation governing the temperature $u(x, t)$ inside the rod is:

$$
\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}=\frac{1}{k} \frac{\partial^{2} u(x, t)}{\partial x^{2}} \quad 0 \leq x \leq a \\
\frac{\partial u(0, t)}{\partial x}=-\Phi \\
\frac{\partial u(a, t)}{\partial x}=T-u(a, t) \\
u(x, 0)=T
\end{array}\right.
$$

where we assumed that the convection constant $h=1$ and that the initial temperature of the rod is constatnt and equal to T.
a) Write the equation for the steady state $v(x)$ and solve it.
b) Write the equation for the difference $w(x, t)=u(x, t)-v(x)$.
c) Use separation of variables to find the general solution for $w(x, t)$. You should find an equation for the eigenvalues λ_{n}. Do not try to sove it! Pay attention to the boudary condition.
d) Show that there are infinitely many eigenvalue λ_{n} and find an asymptotic value for them.
e) Write an expression for coefficients for the solution that satisfies the initial condition.
f) Bonus: write the solution of the problem.

