1.2. Continuation of solutions.

It is convenient to let the pair (x, ) denote a solution of the initial value problem
(1.2) on the interval I. We say that a solution (y, J) is an extension of (z, I)if I C J
and z(t) = y(t) on I. We say that (z, I) is a mazimal solution of (1.2) if and only if,
for any extension (y, J), we have J = I. In this case, we refer to I as the mazimal
interval of existence of the solution of (1.2). If (z,1),I = («, ), is a solution of
(1.2) and 0D denotes the boundary of D, then we say that (¢, x(t)) approaches the
boundary of D, denoted by (t, z(t)) — 0D, ast — « (resp. ) in I if, for any compact
set K C D, there exists € > 0 such that (¢,z(¢)) € D\ K for all t € (a, o + €) (resp.
t € (B—e€, B)). We emphasize that the definition of (¢, x(¢)) approaches the boundary
of D implies that the solution must eventually leave any compact set of D.

Theorem 2.1. For any solution (z*, I*) of (1.2), there exists a maximal solution
(x, I) that is an extension of (z*, I*). The interval I is open, I = («, ), —00 <
a, B < 400, and (t,z(t)) — 0D as t — either end point of I.

Proof. Welet S = {(y, J) : (y, J) is an extension of (z*, I'*) } and define the partial
ordering on S by (y1, J1) < (y2, J2) if and only if J; C Jy and y1(t) = y2(t) on
J1. It is clear that S is not empty. If Sy is a totally ordered subset of S, we define
I=U{J:(y,J) €Sy} and x(t) =y(t) for all t € I. It follows that (x, I) is an upper
bound of Sy and is clearly an extension of (z*, I*). From Zorn’s Lemma, we conclude
that (z*, I*) is contained in the maximal solution (z, I).

We prove that I is open by contradiction. Suppose that the end points of I are
a < (. If I contains (8 and z(3) = (, then (3, ¢) € D and the local existence theorem
implies that there is a solution y of (1.1) with initial state { at time [ existing on an
interval J = [ — ¢, B + €] for some € > 0. If we define z(t) = z(t) on I, 2(t) = y(t)
on (8,8 +¢€), then (z, TU (B, 5+ ¢€)) is an extension of (z, I'), which contradicts the
fact that (z,I) is a maximal solution. The endpoint « is treated in the same way.

We now show that (¢, x(t)) — 0D as t — (. It is clear that we only need to
consider 3 < oo. If the maximal solution (z, I') does not approach the boundary, then
there is a compact set K C D and a monotone sequence {t, },t, — 3 as n — oo,
such that (t,, z(t,)) € K for all n. The compactness of K implies that { z(¢,) } has a
convergent subsequence which is again denoted by { x(¢,) }. Assume that z(t,) — ¢
as n — oo. If we show that z(t) — ( as t — (3, then we can apply Theorem 1.1 to
extend the solution to (a, S+ ¢€) for some € > 0, which contradicts the fact that (z, I)
is a maximal solution.

It remains to show that z(t) — (¢ as t — 3. If @, b are positive real numbers
chosen so that I' = {(¢t,2) : [t — 0] < @, |z —¢| < b} C D, then we let M =
sup{|f(t,z)| : (t,x) € T'}. We choose 0 < a < @, 0 < b < b such that aM < b and
define B = {(t,x) : |t — A| < a.|e — ¢ < b}, R = {(t,2) : |t~ B] < .o — ¢[ < & b},
Since (tn, z(tn)) — (58,¢), we can choose n large enough so that (¢,,x(t,)) € R* and
[ty —tnt1] < %. For t,, <t <t,y1, we claim that (t,x(t)) € R. If t* is the first time
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that (¢, z(t)) leaves R and remains in I, then |z(¢*) — (| > b. On the other hand,

b
(") — z(tn)] < < M — to] < Mt —to] < .

‘[ﬂw®w

and .
|z(t7) = ¢ < 2(t") — 2(tn)| + |z(tn) — ] < sty = b,

Therefore, (t,z(t)) € R for all t > t,,. Now

|2(t) = ¢ < |2 (t) = x(tn)] + [z(tn) — (] <

[ﬂm®m+mm—q

< Mt —tn| + [a(tn) — <],

and so x(t) — ¢ as t — (. This completes the proof of the theorem.

Remark 2.1. In the applications, the region D oftenb is given as D = R x R, Let
B,(0) = {x : |x| < r}. Suppose that we have obtained in some way the following
apriori information: if & € B,(0), then there is an 71 < 7 such that the solution
x(t,0,€) € By, (0) for all ¢ in its maximal interval of existence. For any fixed 7" > 0,
let D, = (—1,T) x B,-(0). The continuation theorem implies that z(¢,0,£) — 9D, as
t — T. Since r; < r, we conclude that lim; .7 (¢, 0, &) exists and belongs to B,.(0).
Thus, the solution can be extended beyond 7" and must exist on [0, c0).

As an example, consider & = —23. If £ is given, then the solution must always
satisfy Jo(t,0,)| < [¢].

Exercise 2.1. Give an example of a scalar differential equation & = f(t,x) with the
following property: there is a sequence of maximal solutions (x,, I,),n = 0,1,2,...,
such that I,, = (—o0,00),n=1,2,..., Iy = (—1,1) and z,(0) — 2¢(0) as n — oc.






