
MATH 6341 First Midterm October 28, 2014

You can use your book and notes. No laptop or wireless devices allowed. Write
clearly and try to make your arguments as linear and simple as possible. In your

solution you can use only statements that were proven in class.

There are 3 questions, each divided into several subquestions. Work on as many
questions or subquestions as you wish. The complete solution of one question will

be considered more that two half solutions. A total of 100 points will be considred a
very good score.

Name:

Question: 1 2 3 Total

Points: 35 65 100 200

Score:
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1. (5 points) Consider the partial differential equation

ut(t, x1, x2) + x1ux1(t, x1, x2) + x2ux2(t, x1, x2) = 0 (1)

where ut(t, x1, x2) = ∂tu(t, x1, x2) and uxi
(t, x1, x2) = ∂xi

u(t, x1, x2).

(a) (10 points) Let u(t, x1, x2) be a solution of eq. (1). Define

g(s) = u
(
t− s, e−sx1, e

−sx2

)
.

Show that
g′(s) = 0

where ′ = d
ds

.

Solution: Call (y1, y2) = e−s(x1, x2) We have

g′(s) = −ut(t− s, y1, y2)− y1∂y1u(t− s, y1, y2)− y2∂y2u(t− s, y1, y2) = 0.

(b) (10 points) Use subquestion a) to find a solution of eq.(1) with initial conditions:

u(0, x1, x2) = u0(x1, x2).

Solution: It is enough to observe that

g(0) = u(t, x1, x2) g(t) = u(0, e−tx1, e
−tx2) = u0(e−tx1, e

−tx2).

Since g(0) = g(t) we get

u(t, x1, x2) = u0(e−tx1, e
−tx2).
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(c) (10 points) Extend subquestions a) and b) to find a solution of

ut(t, x1, x2) + x1ux1(t, x1, x2) + x2ux2(t, x1, x2) = f(t, x1, x2) (2)

u(0, x1, x2) = u0(x1, x2)

where f ∈ C0(R× R2).

Solution: Reasoning like in subquestion a) we get

g′(s) = −f̃(s)

where
f̃(s) = f(t− s, e−sx1, e

−sx2).

We thus have

g(t)− g(0) =

∫ t

0

f̃(s)ds

or

u(t, x1, x2) =u0(e−tx1, e
−tx2) +

∫ t

0

f(t− s, e−sx1, e
−sx2)ds

=u0(e−tx1, e
−tx2) +

∫ t

0

f(s, et−sx1, e
t−sx2)ds.

Page 2 of 11



MATH 6341 First Midterm October 28, 2014

2. (10 points) Let u ∈ C2(R× Rn) be a solution of

utt(t, x)−∆u(t, x) = 0.

(a) (15 points) Define
v(t, x) = u(t, Ox)

where O is a n× n unitary matrix, that is O∗O = Id. Show that v satisfies

vtt(t, x)−∆v(t, x) = 0.

(Hint: call y = Ox and compute ∂xi
v(x) in term of ∂yj

u(y). Proceed similarly for
∂2
xi
v(x).)

Solution: Calling y = Ox we get

∂xi
v(t, x) =

∑
j

Oi,j∂yj
u(t, y)

and
∂2
xi
v(t, x) =

∑
j

∑
k

Oi,jOi,k∂yk
∂yj
u(t, y)

thus

∆xv(t, x) =
∑
i

∂2
xi
v(t, x) =

∑
j,k

(∑
i

Oi,jOi,k

)
∂yk

∂yj
u(t, y).

but ∑
i

Oi,jOi,k = (O∗O)j,k = δj,k

so that
∆xv(t, x) = ∆yu(t, y).

Since
vtt(t, x) = ∂2

t u(t, y)

so that
vtt(t, x)−∆xv(t, x) = ∂2

t u(t, y)−∆yu(t, y) = 0.
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(b) (15 points) (No Galileian Invariance) Given g ∈ Rn, set

G(t, x) = (t, x− gt)

and
vG(t, x) = u (G(t, x)) .

Show that in general
vGtt (t, x)−∆vG(t, x) 6= 0.

(Hint: start with n = 1.)

Solution: Let h0(x1) be in C2(R). It is easy to heck that

u(t, x) = h0(x1 + t)

solves the wave equation. Take now g = (1, 0, . . . , 0) so that

vG(t, x) = h0(x1)

Clearly vG(t, x) does not solve the wave equation as soon as h0 is not a constant.
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(c) (25 points) (Relativistic Invariance) Given g ∈ Rn with |g| < 1, set

L(t, x) = (γ(t− g · x), x− (1− γ)(x · ĝ)ĝ − γgt)

where

γ =
1√

1− |g|2
and ĝ =

g

|g|
and · is the usual scalar product in Rn. Define

vL(t, x) = u (L(t, x)) .

Show that
vLtt(t, x)−∆vL(t, x) = 0.

(Hint: Use subquestion a) to bring g to a “simple” vector. Call t = x0 and
x̄ = (x0, x) to simplify notations. Observe that L(t, x) can be written as Lx̄ for a
suitable matrix L. Proceed as in a).)

Solution:

We first assume that g = (g1, 0, . . . , 0). For such a g we get

L(t, x) = (γ(t− g1x1), γ(x1 − g1t), x2, . . . , xn)

Lets call t = x0 and x̄ = (x0, x).Observe that L(x̄) is a linear transforamtion,
that is L(x̄) = Lx̄ where

L =

 γ −γg1 01×n−1

−γg1 γ 01×n−1

0n−1×1 0n−2×1 Idn−1


where Idn is the n× n identity matrix and 0n×m is the n×m matrix of all 0.

Like in subquestion a) we set ȳ = Lx̄ and we get

∂xi
vL(x̄) =

∑
j

Li,j∂yj
u(ȳ)

and
∂2
xi
vL(x̄) =

∑
j

∑
k

Li,jLi,k∂yj
∂yk

u(ȳ)

so that

∂2
x0
vL(x̄)−

∑
i

∂2
xi
vL(x̄) =

∑
j

∑
k

(∑
i

σiLi,jLi,k

)
∂yj
∂yk

u(ȳ)

where σ0 = 1 while σi = −1 for i ≥ 1. It is now easy to chck that∑
i

σiLi,jLi,k = σjδj,k
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so that

vLtt(t, x)−∆xv
L(t, x) = ∂2

x0
vL(x̄)−

∑
i

∂2
xi
vL(x̄) = ∂2

y0
u(ȳ)−

∑
i

∂2
yi
u(ȳ) = 0.

Observe now that, if O is the (n+ 1)× (n+ 1) matrix of the form

O =

(
1 01×n

0n×1 O

)
where O is a unitary n× n matrix, then

OLgx̄ = LOgOx̄

Chose O such that Og is parallel to the x1 axis. Because O is unitary we get

u(Lgx̄) = u(O∗LOgOx̄).

The fact that u is a solution implyes that u(Ox̄) is a solution (from a)). Thus
u(LOgOx̄) is a solution (from the above argument). Finally, again from a),
u(O∗LOgOx̄).
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3. (10 points) Let U be an open set in Rn, n ≥ 3, x0 ∈ U and u and harmonic function on
U\{x0}, that is

∆u(x) = 0 x ∈ U, x 6= x0.

Assume moreover that u is bounded on U\{x0}, that is

M = sup
x∈U\{x0}

|u(x)| <∞.

In the following we will show that u can be extended to an harmonic function on U .

(a) (15 points) Let x ∈ U and r, s > 0 be such that B(s, x0) ⊂ B(r, x) ⊂ U . Show that

1

r

∫
∂B(r,x)

Du(y) · (y − x)dS(y)− 1

s

∫
∂B(s,x0)

Du(y) · (y − x0)dS(y) = 0.

(Hint: look at the proof of the mean value formula.)

Solution: Observe that

1

r

∫
∂B(r,x)

Du(y) · (y − x)dS(y)− 1

s

∫
∂B(s,x0)

Du(y) · (y − x0)dS(y) =∫
∂B(r,x)

∂νu(y)dS(y)−
∫
∂B(s,x0)

∂νu(y)dS(y) =∫
∂A

∂νu(y)dS(y)

where A = B(r, x)\B(s, x0). Clealry x0 6∈ A so that, using Green’s formula, we
get ∫

∂A

∂νu(y)dS(y) =

∫
A

∆u(y)dy = 0.

Page 7 of 11



MATH 6341 First Midterm October 28, 2014

(b) (15 points) Let

ψ(s) =

∫
B(s,x0)

u(y)dy.

Show that

sn−1

(
1

sn−1
ψ′(s)

)′
=

1

s

∫
∂B(s,x0)

Du(y) · (y − x0)dS(y).

where ′ = d
ds

. (Hint: you can refer to the book for most of the computations.)

Solution: We have
d

ds
ψ(s) =

∫
∂B(s,x0)

u(y)dS(y)

so that
1

nα(n)sn−1

d

ds
ψ(s) = −

∫
∂B(s,x0)

u(y)dS(y) = φ(s)

From the book we know that

d

ds
φ(s) =

1

s
−
∫
∂B(s,x0)

Du(y) · (y − x0)dS(y).

Combining we get the thesis.
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(c) (20 points) Use subquestion a) and b) to show that

1

s

∫
∂B(s,x0)

Du(y) · (y − x0)dS(y) = 0.

for every s. (Hint: use a) to solve the equation in subquestion b) and compare the
solution with the estimate of ψ(s) you get from boundedness.)

Solution: Point a) tell us that

1

s

∫
∂B(s,x0)

Du(y) · (x0 − y)dS(y) = C.

From subquestion b) we get

sn−1

(
1

sn−1
ψ′(s)

)′
= C

or

ψ(s) = − Cs2

2(n− 2)
+
C1s

n

n
+ C2

for suitable contants C1 and C2. On the other hand, because u < M we know
that

|ψ(s)| ≤Msn.

This immediately implyes that C2 = 0. Moreover we must have∣∣∣∣− Cs2

2(n− 2)
+
C1s

n

n

∣∣∣∣ ≤Msn

or ∣∣∣∣− C

2(n− 2)sn−2
+
C1

n

∣∣∣∣ ≤M

and this is possible only if C = 0.
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(d) (15 points) Let

φ(r, x) = −
∫
∂B(r,x)

u(y)dS(y).

Show that, for every x ∈ U , φ(r, x) does not depend on r. (Hint: just compute
φ′(r, x) and use a), b) and c).)

Solution: As usual

φ′(r, x) =
1

r
−
∫
∂B(s,x0)

Du(y) · (y − x0)dS(y).

If x = x0 the statement follows immediately from c). If r < |x − x0| it is a
consequence of the mean value formula while if r > |x−x0| it follows immediately
from a) and c).

It remain to check that φ(r, x) is continuous when r = |x− x0| but this follows
easily from the boundedness of u.
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(e) (25 points) Show that u(x) can be extended to a continuous function on U . Show
that the extension of u is C2(U). Complete the proof by showing that it is harmonic.
(Hint: write u(x) and u(x′) as integrals on suitable balls. Compare the integral
when x is close to x′. Repeat for ∂xi

u and ...)

Solution: Define u(x0) = φ(r, x0). Observe that we have, for every x ∈ U ,

−
∫
B(r,x)

u(y)dy = u(x)

Let xn a sequence of subquestion such that xn → x0. We have

|u(xn)− u(x0)| =
∣∣∣∣−∫
B(r,x)

u(y)dy −−
∫
B(r,xn)

u(y)dy

∣∣∣∣ ≤
≤ 1

nα(n)rn

∫
B(r,x)∆B(r,xn)

|u(y)|dy −→n→∞ 0

Thus u is a continuous function.

Observe now that ∂xi
u is an harmonic function on U\{x0}. Moreover for every

|x− x0| ≤ ε and r > 2ε we have

∂xi
u(x) = −

∫
∂B(0,1)

∂xi
u(x+ ry)dS(y) = −

∫
∂B(x,r)

∂xi
u(y)dS(y)

Since B(x, r) ⊂ B(x0, 2r) and ∂xi
u is continuos on U\B(x0, 2r) and we get that

∂xi
u is continuous at x0 Similarly we get that ∂xi

∂xj
u is continuous at x0 so that

u ∈ C2(U). By continuity we have that

∆u(x0) = 0

so that u is harmonic on U .
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