Math 4581 Quiz 1 Solution

1. Let V be the usual linear space of all real-valued functions defined on the real line. Which of the following subsets are subspaces of V? Be sure and explain your answers.

a) The set of all functions with no more than 2 discontinuities.

This is not a linear space. The functions f and g defined by

$$f(x) = \begin{cases}
0 & x < 0 \\
1 & 0 \leq x < 1 \\
0 & 1 \leq x
\end{cases}, \text{ and } g(x) = \begin{cases}
0 & x < 2 \\
1 & 2 \leq x < 3 \\
0 & 3 \leq x
\end{cases}$$

each have exactly two discontinuities, but $f + g$ has more than two discontinuities.

b) The set of all functions with at least 2 discontinuities.

This one is not a linear space. The function $f(x) = 0$ does not have at least 2 discontinuities.

c) The set of all bounded functions.

This one is a linear space. Suppose f and g are bounded; that is, $|f(x)| \leq M$ and $|g(x)| \leq N$ for some constants M and N. Then $|f(x) + g(x)| \leq |f(x)| + |g(x)| = M + N$, and for any scalar a, we have $|af(x)| = |a||f(x)| \leq |a|M$. Thus both $f + g$ and af are bounded also.

d) The set of all functions f such that $|f(x)| \leq 1$ for all x.

This one is not a linear space. $f(x) = 1$ is in the set but $2f(x) = 2$ is not.

e) The set of all functions f such that $f(\pi) = 0$.

This one is a linear space. Suppose f and g are in the set; that is, suppose $f(\pi) = g(\pi) = 0$. Then $(f + g)(\pi) = f(\pi) + g(\pi) = 0 + 0 = 0$, and so $f + g$ is also in the set. Also, if a is a scalar, then $af(\pi) = a0 = 0$, and we have af in the set.

2. Let V be the linear space of all real polynomials together with the inner product

$$\langle p, q \rangle = \int_0^1 xp(x)q(x)dx.$$

Find an orthogonal base for the subspace of V consisting of all quadratic polynomials.

The set $\{1, x, x^2\}$ is clearly a base for the subspace of all quadratics. We unleash the Gram-Schmidt procedure to find an orthogonal base $\{\varphi_1, \varphi_2, \varphi_3\}$. First,
\(\varphi_1 = 1. \) Then

\[
\text{proj}(x; \varphi_1) = \frac{(x, 1)}{(1, 1)}
\]

where \((x, 1) = \int_0^1 x(x \cdot 1)dx = \frac{1}{3} \) and \((1, 1) = \int_0^1 x(1 \cdot 1)dx = \frac{1}{2} \). Thus,

\[
\varphi_2 = x - \text{proj}(x; \varphi_1) = x - \frac{1 \cdot 2}{3 \cdot 1} = x - \frac{2}{3}.
\]

Next,

\[
\varphi_3 = x^2 - \text{proj}(x^2; \varphi_1, \varphi_2)
\]

\[
\varphi_3 = x^2 - \frac{(x^2, 1)}{(1, 1)} - \frac{(x^2, (x - 2/3))}{(x - 2/3, x - 2/3)}(x - 2/3).
\]

Now,

\[
(x^2, 1) = \int_0^1 x(x^2 \cdot 1)dx = \frac{1}{4}.
\]

\[
(x^2, (x - 2/3)) = \int_0^1 x[x^2(x - 2/3)]dx = \frac{1}{30}
\]

\[
(x - 2/3, x - 2/3) = \int_0^1 x(x - 2/3)^2dx = \frac{1}{36}
\]

Thus,

\[
\varphi_3 = x^2 - \frac{(x^2, 1)}{(1, 1)} - \frac{(x^2, (x - 2/3))}{(x - 2/3, x - 2/3)}(x - 2/3)
\]

\[
= x^2 - \frac{1 \cdot 2}{4 \cdot 1} - \frac{1 \cdot 36}{30 \cdot 1}(x - 2/3)
\]

\[
= x^2 - \frac{3}{4} - \frac{6}{5}(x - 2/3) = x^2 - \frac{6}{5}x + \frac{3}{10}.
\]

3. a) Let \(C(x) \) be the limit of the Fourier cosine series of \(f(x) = \sin x \) on the interval \([0, \pi]\). Sketch the graph of \(C(x) \) on the interval \([-2\pi, 2\pi]\). The Fourier cosine series converges to \(\frac{1}{2} [\hat{f}(x^+) + \hat{f}(x^-)] \) where \(\hat{f} \) is the even periodic extension of \(f(x) = \sin x \). Thus,
b) Let $S(x)$ be the limit of the Fourier sine series of $f(x) = \cos x$ on the interval $[0, \pi]$. Sketch the graph of $S(x)$ on the interval $[-2\pi, 2\pi]$.

The Fourier sine series converges to $\frac{1}{2}[\hat{f}(x +) + \hat{f}(x -)]$ where \hat{f} is the odd periodic extension of $f(x) = \cos x$. Thus,