I. Homework to be handed in before 10:06 a.m., Wednesday, January 19

Let S be the set of all vectors (x, y, z) in \mathbb{R}^3 such that $x + y + z = 0$.

a) Show that S is a subspace of \mathbb{R}^3.

b) Find a basis for S.

II. Homework to be handed in before 10:06 a.m., Wednesday, January 26

Explain carefully what is wrong with Theorem 3.10 (page 107 of the Apostol textbook).

III. Homework to be handed in before 10:06 a.m., Wednesday, February 3

In the real linear space $C(0, \pi)$ with inner product $(x, y) = \int_0^\pi x(t)y(t)dt$, let

$$x_n(t) = \sqrt{\frac{2}{\pi}} \sin nt.$$

a) Prove that $S_N = \{x_1, x_2, \ldots, x_N\}$ is an orthonormal set.

b) Find the element y_N of the span of S_N nearest to $f(t) = 1$.

c) Find $\|y_N - f\|^2$.

IV. Homework to be handed in before 10:06 a.m., Wednesday, February 9

Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be defined by

$$T(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + x_4, 3x_1 + 2x_2 + 2x_4, 7x_1 + 4x_2 - 2x_3 + 4x_4, 2x_1 + x_2 - x_3 + x_4).$$

a) Find a basis for the null space of T.

b) Find a basis for the range of T.
V. Homework to be handed in before 10:06 a.m., Wednesday, February 16

For each \(x \in \mathbb{R}^2 \), let \(T_\alpha(x) \) be the vector resulting from rotating \(x \) through an angle \(\alpha \) in a counterclockwise direction about the origin.

a) Find the matrix representation with respect to the usual basis \(\{i, j\} \) of the linear function \(T_\alpha : \mathbb{R}^2 \to \mathbb{R}^2 \) so defined.

b) Find the vector that results from rotating \(x = (14, -23) \) 60 degrees about the origin (counterclockwise).

c) Find the matrix representation of the composition \(T_\beta \circ T_\alpha \).

d) Observe that \(T_\beta \circ T_\alpha = T_{\alpha + \beta} \), and deduce a familiar trigonometric identity.

VI. Homework to be handed in before 10:06 a.m., Wednesday, February 23

Let

\[
A = \begin{bmatrix}
1 & 2 & 3 & 5 \\
-1 & 2 & 3 & 4 \\
2 & 2 & 5 & 6 \\
1 & 3 & 4 & 5
\end{bmatrix}.
\]

a) Find the determinant \(d(A) \) and prove you have the correct answer. (Telling me what Matlab or Maple or Mathematica, etc., says is not a proof.

b) If \(A \) has an inverse, find its determinant. Otherwise, explain carefully how you know \(A \) is not invertible. (Here also do not simply take the word of some computer program.)
VII. Homework to be handed in before 10:06 a.m., Wednesday, March 29

Let

\[A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}. \]

a) Find a diagonal matrix similar to \(A \).

b) Use the result of part a) to find a square root of \(A \). In other words, find a matrix \(R \) so that \(R^2 = A \).

VIII. Homework to be handed in before 10:06 a.m., Wednesday, April 5

1. Exercise #7, page 159
2. Exercise #13, page 226

IX. Homework to be handed in before 10:06 a.m., Wednesday, April 19

Let \(S \) be the surface with equation \(x^2 + 2yz = 0 \), where \((x, y, z)\) are coordinates with respect to the standard basis for \(\mathbb{R}^3 \). Find an orthonormal basis \(E = \{u_1, u_2, u_3\} \) for \(\mathbb{R}^3 \) so that the coordinates \((\tilde{x}, \tilde{y}, \tilde{z})\) of the points of \(S \) with respect to \(E \) satisfy an equation in which there are no “cross product” terms—that is, the equation involves only \(\tilde{x}^2, \tilde{y}^2, \) and \(\tilde{z}^2 \). Identify and sketch the surface.
X. Homework to be handed in before 10:06 a.m., Wednesday, April 26

1. Suppose the square matrix \(A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \) has the property that

\[|a_{ii}| > \sum_{\substack{j=1 \atop j \neq i}}^{n} |a_{ij}| \text{ for each } i = 1, 2, \ldots, n. \]

Explain how you know \(A \) is invertible.

2. Suppose \(A \) and \(B \) are \(n \times n \) matrices, and suppose \(A \) is invertible and \(|\lambda| < 1 \) for every eigenvalue \(\lambda \) of \(A^{-1}B \). Explain how you know the matrix \(A + B \) is invertible.