1. Find a function g the gradient of which is

$$\mathbf{F}(x,y,z) = (e^{xy} + 2xy + 3x^2)\mathbf{i} + (xze^{xy} + x^2 + 2yz + 3)\mathbf{j} + (xye^{xy} + y^2 + 2z)\mathbf{k},$$

or explain carefully why there is no such g.

If $\nabla g = \mathbf{F}$, then

$$\frac{\partial g}{\partial x} = e^{xy} + 2xy + 3x^2.$$

Thus,

$$g(x,y,z) = xe^{xy} + x^2y + x^3 + h(y,z).$$

To find the function $h(y,x)$, differentiate with respect to y:

$$\frac{\partial g}{\partial y} = xze^{xy} + x^2 + \frac{\partial h}{\partial y}(y,z).$$

But we know also that

$$\frac{\partial g}{\partial y} = xze^{xy} + x^2 + 2yz + 3.$$

Thus,

$$xze^{xy} + x^2 + \frac{\partial h}{\partial y}(y,z) = xze^{xy} + x^2 + 2yz + 3, \text{ or } \frac{\partial h}{\partial y}(y,z) = 2yz + 3.$$

Integrate to find h:

$$h(y,z) = y^2z + 3y + k(z).$$

Put this into the expression we found for g:

$$g(x,y,z) = xe^{xy} + x^2y + x^3 + h(y,z) = xe^{xy} + x^2y + x^3 + y^2z + 3y + k(z).$$

To find $k(z)$, differentiate with respect to z:

$$\frac{\partial g}{\partial z} = xye^{xy} + y^2 + k'(z),$$

and we know,

$$\frac{\partial g}{\partial z} = xye^{xy} + y^2 + 2z.$$

Thus,

$$xye^{xy} + y^2 + k'(z) = xye^{xy} + y^2 + 2z, \text{ or } k'(z) = 2z.$$

At last, $k(z) = z^2$, and we have
\[
g(x,y,z) = xe^{xyz} + x^2 y + x^3 + y^2 z + 3y + k(z)
= xe^{xyz} + x^2 y + x^3 + y^2 z + 3y + z^2.
\]

2. Find the vector line integral of \(F = xy \mathbf{i} + z \mathbf{j} + (x^2 + z^2) \mathbf{k} \) from \((0,0,0) \) to \((1,1,1) \) along the path \(P \) which consists of the curve \(y = x^2 \) from \((0,0,0) \) to \((1,1,0) \) together with the straight line from \((1,1,0) \) to \((1,1,1) \).

We’ll integrate first from \((0,0,0) \) to \((1,1,0) \) along the curve \(y = x^2 \). A vector description of this path, call it \(P_1 \), is simply

\[
\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j}, \quad \text{for } 0 \leq t \leq 1.
\]

Now, \(\mathbf{r}'(t) = \mathbf{i} + 2t \mathbf{j} \), and so

\[
\int_{P_1} F \cdot d\mathbf{r} = \int_0^1 F(\mathbf{r}(t)) \cdot \mathbf{r}'(t)\,dt
= \int_0^1 (t^3 \mathbf{i} + t^2 \mathbf{k}) \cdot (\mathbf{i} + 2t \mathbf{j})\,dt
= \int_0^1 t^3\,dt = \frac{1}{4}.
\]

Next, integrate along the straight line from \((1,1,0) \) to \((1,1,1) \):

A vector description for the line, call it \(P_2 \), is just \(\mathbf{r}(t) = \mathbf{i} + \mathbf{j} + t \mathbf{k} \), for \(0 \leq t \leq 1 \). So,

\[
\int_{P_2} F \cdot d\mathbf{r} = \int_0^1 F(\mathbf{r}(t)) \cdot \mathbf{r}'(t)\,dt
= \int_0^1 [\mathbf{i} + \mathbf{j} + (1 + t^2) \mathbf{k}] \cdot \mathbf{k} \,dt
= \int_0^1 (1 + t^2)\,dt = 1 + \frac{1}{3} = \frac{4}{3}.
\]

Finally,

\[
\int_P F \cdot d\mathbf{r} = \int_{P_1} F \cdot d\mathbf{r} + \int_{P_2} F \cdot d\mathbf{r}
= \frac{1}{4} + \frac{4}{3} = \frac{19}{12}.
\]