Chapter Eleven

Argument Principle

11.1. Argument principle. Let C be a simple closed curve, and suppose f is analytic on C. Suppose moreover that the only singularities of f inside C are poles. If $f(z) \neq 0$ for all $z \in C$, then $\Gamma = f(C)$ is a closed curve which does not pass through the origin. If

$$\gamma(t), \ \alpha \leq t \leq \beta$$

is a complex description of C, then

$$\zeta(t) = f(\gamma(t)), \ \alpha \leq t \leq \beta$$

is a complex description of Γ. Now, let’s compute

$$\int_\gamma \frac{f'(z)}{f(z)} \, dz = \int_\alpha^\beta \frac{f'(\gamma(t))}{f(\gamma(t))} \gamma'(t) \, dt.$$

But notice that $\zeta'(t) = f'(\gamma(t))\gamma'(t)$. Hence,

$$\int_\gamma \frac{f'(z)}{f(z)} \, dz = \int_\alpha^\beta \frac{f'(\gamma(t))}{f(\gamma(t))} \gamma'(t) \, dt = \int_\alpha^\beta \frac{\zeta'(t)}{\zeta(t)} \, dt$$

$$= \int_\Gamma \frac{1}{\zeta} \, d\zeta = n2\pi i,$$

where $|n|$ is the number of times Γ ”winds around” the origin. The integer n is positive in case Γ is traversed in the positive direction, and negative in case the traversal is in the negative direction.

Next, we shall use the Residue Theorem to evaluate the integral $\int_\gamma \frac{f'(z)}{f(z)} \, dz$. The singularities of the integrand $\frac{f'(z)}{f(z)}$ are the poles of f together with the zeros of f. Let’s find the residues at these points. First, let $Z = \{z_1, z_2, \ldots, z_K\}$ be set of all zeros of f. Suppose the order of the zero z_j is n_j. Then $f(z) = (z-z_j)^{n_j}h(z)$ and $h(z_j) \neq 0$. Thus,

$$\frac{f'(z)}{f(z)} = \frac{(z-z_j)^{n_j}h'(z) + n_j(z-z_j)^{n_j-1}h(z)}{(z-z_j)^{n_j}h(z)}$$

$$= \frac{h'(z)}{h(z)} + \frac{n_j}{z-z_j}.$$
Then
\[
\phi(z) = (z - z_j) \frac{f'(z)}{f(z)} = (z - z_j) \frac{h'(z)}{h(z)} + n_j,
\]
and
\[
\text{Res}_{z=z_j} \frac{f'}{f} = n_j.
\]

The sum of all these residues is thus
\[
N = n_1 + n_2 + \ldots + n_K.
\]

Next, we go after the residues at the poles of \(f \). Let the set of poles of \(f \) be \(P = \{ p_1, p_2, \ldots, p_J \} \). Suppose \(p_j \) is a pole of order \(m_j \). Then
\[
h(z) = (z - p_j)^{m_j} f(z)
\]
is analytic at \(p_j \). In other words,
\[
f(z) = \frac{h(z)}{(z - p_j)^{m_j}}.
\]

Hence,
\[
\frac{f'(z)}{f(z)} = \frac{(z - p_j)^{m_j} h'(z) - m_j (z - p_j)^{m_j - 1} h(z)}{(z - p_j)^{2m_j}} + \frac{(z - p_j)^{m_j}}{h(z)}
\]
\[
= \frac{h'(z)}{h(z)} - \frac{m_j}{(z - p_j)^{m_j}}.
\]

Now then,
\[
\phi(z) = (z - p_j)^{m_j} \frac{f'(z)}{f(z)} = (z - p_j)^{m_j} \frac{h'(z)}{h(z)} - m_j,
\]
and so
\[
\text{Res}_{z=p_j} \frac{f'}{f} = \phi(p_j) = -m_j.
\]

The sum of all these residues is
\[
-P = -m_1 - m_2 - \ldots - m_J
\]
Then,

\[\oint_C \frac{f'(z)}{f(z)} \, dz = 2\pi i (N - P); \]

and we already found that

\[\oint_C \frac{f'(z)}{f(z)} \, dz = n2\pi i, \]

where \(n \) is the "winding number", or the number of times \(\Gamma \) winds around the origin—\(n > 0 \) means \(\Gamma \) winds in the positive sense, and \(n \) negative means it winds in the negative sense. Finally, we have

\[n = N - P, \]

where \(N = n_1 + n_2 + \ldots + n_K \) is the number of zeros inside \(C \), counting multiplicity, or the order of the zeros, and \(P = m_1 + m_2 + \ldots + m_J \) is the number of poles, counting the order. This result is the celebrated argument principle.

Exercises

1. Let \(C \) be the unit circle \(|z| = 1 \) positively oriented, and let \(f \) be given by

\[f(z) = z^3. \]

How many times does the curve \(f(C) \) wind around the origin? Explain.

2. Let \(C \) be the unit circle \(|z| = 1 \) positively oriented, and let \(f \) be given by

\[f(z) = \frac{z^2 + 2}{z^3}. \]

How many times does the curve \(f(C) \) wind around the origin? Explain.

3. Let \(p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 \), with \(a_n \neq 0 \). Prove there is an \(R > 0 \) so that if \(C \) is the circle \(|z| = R \) positively oriented, then

\[\oint_C \frac{p'(z)}{p(z)} \, dz = 2n\pi i. \]

4. Suppose \(f \) is entire and \(f(z) \) is real if and only if \(z \) is real. Explain how you know that \(f \) has at
most one zero.

11.2 Rouche’s Theorem. Suppose \(f \) and \(g \) are analytic on and inside a simple closed contour \(C \). Suppose moreover that \(|f(z)| > |g(z)| \) for all \(z \in C \). Then we shall see that \(f \) and \(f + g \) have the same number of zeros inside \(C \). This result is Rouche’s Theorem. To see why it is so, start by defining the function \(\Psi(t) \) on the interval \(0 \leq t \leq 1 \):

\[
\Psi(t) = \frac{1}{2\pi i} \int_C \frac{f'(z) + tg'(z)}{f(z) + tg(z)} \, dz.
\]

Observe that this is okay—that is, the denominator of the integrand is never zero:

\[
|f(z) + tg(z)| \geq |f(t)| - t|g(t)| \geq |f(t)| - |g(t)| > 0.
\]

Observe that \(\Psi \) is continuous on the interval \([0, 1]\) and is integer-valued—\(\Psi(t) \) is the number of zeros of \(f + tg \) inside \(C \). Being continuous and integer-valued on the connected set \([0, 1]\), it must be constant. In particular, \(\Psi(0) = \Psi(1) \). This does the job!

\[
\Psi(0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{f(z)} \, dz
\]

is the number of zeros of \(f \) inside \(C \), and

\[
\Psi(1) = \frac{1}{2\pi i} \int_C \frac{f'(z) + g'(z)}{f(z) + g(z)} \, dz
\]

is the number of zeros of \(f + g \) inside \(C \).

Example

How many solutions of the equation \(z^6 - 5z^5 + z^3 - 2 = 0 \) are inside the circle \(|z| = 1|\)? Rouche’s Theorem makes it quite easy to answer this. Simply let \(f(z) = -5z^5 \) and let \(g(z) = z^6 + z^3 - 2 \). Then \(|f(z)| = 5 \) and \(|g(z)| \leq |z|^6 + |z|^3 + 2 = 4 \) for all \(|z| = 1\). Hence \(|f(z)| > |g(z)| \) on the unit circle. From Rouche’s Theorem we know then that \(f \) and \(f + g \) have the same number of zeros inside \(|z| = 1|\). Thus, there are 5 such solutions.

The following nice result follows easily from Rouche’s Theorem. Suppose \(U \) is an open set (i.e., every point of \(U \) is an interior point) and suppose that a sequence \((f_n)\) of functions analytic on \(U \) converges uniformly to the function \(f \). Suppose further that \(f \) is not zero on the circle \(C = \{z : |z - z_0| = R\} \subset U \). Then there is an integer \(N \) so that for all \(n \geq N \), the functions \(f_n \) and \(f \) have the same number of zeros inside \(C \).

This result, called Hurwitz’s Theorem, is an easy consequence of Rouche’s Theorem. Simply
observe that for \(z \in \mathbb{C} \), we have \(|f(z)| > \varepsilon > 0\) for some \(\varepsilon \). Now let \(N \) be large enough to insure that

\[
|f_n(z) - f(z)| < \varepsilon \quad \text{on} \quad C.
\]

It follows from Rouche’s Theorem that \(f \) and \(f + (f_n - f) = f_n \) have the same number of zeros inside \(C \).

Example

On any bounded set, the sequence \((f_n)\), where \(f_n(z) = 1 + z + \frac{z^2}{2} + \ldots + \frac{z^n}{n!} \), converges uniformly to

\[
f(z) = e^z, \quad \text{and} \quad f(z) \neq 0 \quad \text{for all} \quad z.
\]

Thus for any \(R \), there is an \(N \) so that for \(n > N \), every zero of \(1 + z + \frac{z^2}{2} + \ldots + \frac{z^n}{n!} \) has modulus > \(R \). Or to put it another way, given an \(R \) there is an \(N \) so that for \(n > N \) no polynomial \(1 + z + \frac{z^2}{2} + \ldots + \frac{z^n}{n!} \) has a zero inside the circle of radius \(R \).

Exercises

5. How many solutions of \(3e^z - z = 0 \) are in the disk \(|z| \leq 1| \)? Explain.

6. Show that the polynomial \(z^6 + 4z^2 - 1 \) has exactly two zeros inside the circle \(|z| = 1| \).

7. How many solutions of \(2z^4 - 2z^3 + 2z^2 - 2z + 9 = 0 \) lie inside the circle \(|z| = 1| \)?

8. Use Rouche’s Theorem to prove that every polynomial of degree \(n \) has exactly \(n \) zeros (counting multiplicity, of course).

9. Let \(C \) be the closed unit disk \(|z| \leq 1| \). Suppose the function \(f \) analytic on \(C \) maps \(C \) into the open unit disk \(|z| < 1| \)—that is, \(|f(z)| < 1 \quad \text{for all} \quad z \in C \). Prove there is exactly one \(w \in C \) such that \(f(w) = w \).

(The point \(w \) is called a **fixed point** of \(f \).)