Chapter Eleven

Argument Principle

11.1. Argument principle. Let C be a simple closed curve, and suppbseanalytic onC.
Suppose moreover that the only singularitie§iokideC are poles. If(z) # O for all zC, then
I' = f(C) is a closed curve which does not pass through the origin. If

yt),a <t<p

is a complex description @, then

¢ =f(y®), a<t<p

is a complex description @f. Now, let's compute
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But notice that'(t) = f'(y(t))y'(t). Hence,

[1ge-
Cc

F () 20
ﬂa»y”t‘fcmdt

L dz = n2xi,

’—1'—.9'—-‘&

where|n|is the number of timeF "winds around” the origin. The integeris positive in casé& is
traversed in the positive direction, and negative in case évetsal is in the negative direction.

Next, we shall use the Residue Theorem to evaluate the inlfaéé%ldz. The singularities of the

integrand% are the poles dftogether with the zeros éfLet’s find the residues at these points.

First, letZ = {z1,2»,...,z«} be set of all zeros df Suppose the order of the zexds n;. Then
f(2) = (z—z)"h(2) andh(z) # 0. Thus,
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Then

h'(2)
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and
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Res-~ = n.

Z=Zj f
The sum of all these residues is thus

N = ny +nNs +...+Ng.

Next, we go after the residues at the pole§ akt the set of poles dfbeP = {p1,p2,...

Suppose; is a pole of ordem;. Then
h(z) = (z-p)™ (2

is analytic aip;. In other words,
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Now then,
0@ - @-pn 2 - @-pyn 1 E - m,
and so
Res £ = ¢(p) = -m,.
The sum of all these residues is
-P=-mi-my—...—m;
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Then,

jf—) z = 27i(N - P);
C

and we already found that

1@ 47 - n2zi,
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wheren is the "winding number”, or the number of tim&swinds around the origin--> 0 means
I" winds in the positive sense, andhegative means it winds in the negative sense. Finally, we have

n=N-P,

whereN = n; + n, +... +Nk is the number of zeros insid& counting multiplicity, or the order of
the zeros, an® = m; + m, +...+my is the number of poles, counting the order. This result is the
celebratechrgument principle.

Exercises

1. Let C be the unit circldz| = 1 positively oriented, and létbe given by
f(2) = 2.
How many times does the curf@C) wind around the origin? Explain.

2. Let C be the unit circldz| = 1 positively oriented, and létbe given by
2
(2 = 242 2,

How many times does the curf@C) wind around the origin? Explain.

3. Letp(2) = anz" + an12"! +... +a1z+ ap, with a, = 0. Prove there is aR > 0 so that ifC is
the circle|z| = R positively oriented, then

J. P (Z) dz = 2nri.
C

4. Supposé is entire and(2) is real if and only ifz is real. Explain how you know th&thas at
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most one zero.

11.2 Rouche’s TheoremSupposéd andg are analytic on and inside a simple closed con@ur
Suppose moreover thitz)| > [g(2)| for all zC. Then we shall see thaandf + g have the same
number of zeros insid€. This result iSRouche’s Theorem.To see why it is so, start by defining the
function(t) on the interval <t < 1 :
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Yo = 2ri .[
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Observe that this is okay—that is, the denominator of the intebisanever zero:

f(2) +19(2)| = [FO] - ta® [ = [FO]-g®] > O.

Observe tha¥ is continuous on the intervéD, 1] and is integer-valued-¥(t) is the number of
zeros off + tg insideC. Being continuous and integer-valued on the connectel@s#t it must be
constant. In particula®’(0) = W(1). This does the job!

_ 1 (@
¥(0) = 5 Cﬁdz

is the number of zeros éfinsideC, and

_ 1 (f@+d®
Yo =55 I @700 dz

is the number of zeros 6f g insideC.

Example

How many solutions of the equatiah — 5z° + z3 — 2 = 0 are inside the circliz| = 1? Rouche’s
Theorem makes it quite easy to answer this. Simplf(Bt= —5z° and letg(z) = z° + 22 — 2. Then
f(z)| = 5andg(2)| < |zI° + |z]* + 2 = 4 for all |z] = 1. Henceff(2)| > |g(2)| on the unit circle. From
Rouche’s Theorem we know then tli@ndf + g have the same number of zeros indije- 1. Thus
there are 5 such solutions.

The following nice result follows easily from Rouche’s ThaoteéSupposéJ is an open seti €.,
every point ofU is an interior point) and suppose that a sequéfigeof functions analytic otJ
converges uniformly to the functidn Suppose further thais not zero on the circle
C=14{z:|z- 2| =R} < U. Thenthere is an integét so that for alih > N, the functiond, andf
have the same number of zeros insitle

This result, calledHurwitz’s Theorem, is an easy consequence of Rouche’s Theorem. Simply
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observe that foreC, we havef(z)| > ¢ > 0 for somee. Now letN be large enough to insure that
ffn(2) — f(2)| < e onC. It follows from Rouche’s Theorem théandf + (f, — f) = f, have the same
number of zeros insidé.

Example

On any bounded set, the sequefigg, wheref,(z2) = 1+ z+ 2—22 +...+f1—?, converges uniformly to

f(z) = €% andf(z) # O for all z. Thus for anyR, there is arlN so that fom > N, every zero of
1+z+ 2—22 +...+rz1—? has modulus- R. Or to put it another way, given dthere is arN so that for

n > N no polynomial 1+ z+ 2—22 +...+f1—? has a zero inside the circle of radiRs

Exercises

5. How many solutions of & — z = 0 are in the dislz| < 1? Explain.

6. Show that the polynomia® + 4z? — 1 has exactly two zeros inside the ciridp= 1.
7. How many solutions of 2 — 223 + 222 — 2z + 9 = 0 lie inside the circldz| = 1?

8. Use Rouche’s Theorem to prove that every polynomial of degiees exactlyr zeros
(counting multiplicity, of course).

9. Let C be the closed unit disk| < 1. Suppose the functidranalytic onC mapsC into the open

unit disk|z| < 1—that is,[f(z)| < 1 for all zC. Prove there is exactly oveC such thaf(w) = w.
(The pointw is called afixed point of f .)
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