Chapter Four
Integration

4.1. Introduction. If $\gamma : D \to \mathbb{C}$ is simply a function on a real interval $D = [\alpha, \beta]$, then the integral $\int_{\alpha}^{\beta} \gamma(t)dt$ is, of course, simply an ordered pair of everyday 3rd grade calculus integrals:

$$\int_{\alpha}^{\beta} \gamma(t)dt = \int_{\alpha}^{\beta} x(t)dt + i \int_{\alpha}^{\beta} y(t)dt,$$

where $\gamma(t) = x(t) + iy(t)$. Thus, for example,

$$\int_{0}^{1} [(t^2 + 1) + it^3]dt = \frac{4}{3} + \frac{i}{4}.$$

Nothing really new here. The excitement begins when we consider the idea of an integral of an honest-to-goodness complex function $f : D \to \mathbb{C}$, where D is a subset of the complex plane. Let’s define the integral of such things; it is pretty much a straight-forward extension to two dimensions of what we did in one dimension back in Mrs. Turner’s class.

Suppose f is a complex-valued function on a subset of the complex plane and suppose a and b are complex numbers in the domain of f. In one dimension, there is just one way to get from one number to the other; here we must also specify a path from a to b. Let C be a path from a to b, and we must also require that C be a subset of the domain of f.

\[\text{Diagram of path from } a \text{ to } b\]
Note we do not even require that \(a \neq b\); but in case \(a = b\), we must specify an orientation for the closed path \(C\). We call a path, or curve, **closed** in case the initial and terminal points are the same, and a **simple closed** path is one in which no other points coincide. Next, let \(P\) be a **partition** of the curve; that is, \(P = \{z_0, z_1, z_2, \ldots, z_n\}\) is a finite subset of \(C\), such that \(a = z_0, b = z_n\), and such that \(z_j\) comes immediately after \(z_{j-1}\) as we travel along \(C\) from \(a\) to \(b\).

A Riemann sum associated with the partition \(P\) is just what it is in the real case:

\[
S(P) = \sum_{j=1}^{n} f(z^*_j) \Delta z_j,
\]

where \(z^*_j\) is a point on the arc between \(z_{j-1}\) and \(z_j\), and \(\Delta z_j = z_j - z_{j-1}\). (Note that for a given partition \(P\), there are many \(S(P)\)—depending on how the points \(z^*_j\) are chosen.) If there is a number \(L\) so that given any \(\varepsilon > 0\), there is a partition \(P_\varepsilon\) of \(C\) such that

\[
|S(P) - L| < \varepsilon
\]

whenever \(P \supset P_\varepsilon\), then \(f\) is said to be integrable on \(C\) and the number \(L\) is called the **integral of** \(f\) on \(C\). This number \(L\) is usually written \(\int_C f(z) dz\).

Some properties of integrals are more or less evident from looking at Riemann sums:

\[
\int_C cf(z) dz = c \int_C f(z) dz
\]

for any complex constant \(c\).
\[\int_C (f(z) + g(z))dz = \int_C f(z)dz + \int_C g(z)dz \]

4.2 Evaluating integrals. Now, how on Earth do we ever find such an integral? Let \(\gamma : [\alpha, \beta] \rightarrow C \) be a complex description of the curve \(C \). We partition \(C \) by partitioning the interval \([\alpha, \beta]\) in the usual way: \(\alpha = t_0 < t_1 < t_2 < \ldots < t_n = \beta \). Then \(\{a = \gamma(\alpha), \gamma(t_1), \gamma(t_2), \ldots, \gamma(\beta) = b\} \) is partition of \(C \). (Recall we assume that \(\gamma'(t) \neq 0 \) for a complex description of a curve \(C \).) A corresponding Riemann sum looks like

\[S(P) = \sum_{j=1}^{n} f(\gamma(t_j^*)) (\gamma(t_j) - \gamma(t_{j-1})). \]

We have chosen the points \(z_j^* = \gamma(t_j^*) \), where \(t_{j-1} \leq t_j^* \leq t_j \). Next, multiply each term in the sum by 1 in disguise:

\[S(P) = \sum_{j=1}^{n} f(\gamma(t_j^*)) (\frac{\gamma(t_j) - \gamma(t_{j-1})}{t_j - t_{j-1}})(t_j - t_{j-1}). \]

I hope it is now reasonably convincing that ”in the limit”, we have

\[\int_C f(z)dz = \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt. \]

(We are, of course, assuming that the derivative \(\gamma' \) exists.)

Example

We shall find the integral of \(f(z) = (x^2 + y) + i(xy) \) from \(a = 0 \) to \(b = 1 + i \) along three different paths, or contours, as some call them.

First, let \(C_1 \) be the part of the parabola \(y = x^2 \) connecting the two points. A complex description of \(C_1 \) is \(\gamma_1(t) = t + it^2, \ 0 \leq t \leq 1 \):
Now, $\gamma_1'(t) = 1 + 2ti$, and $f(\gamma_1(t)) = (t^2 + t^2) + it^2 = 2t^2 + it^3$. Hence,

$$\int_{C_1} f(z)dz = \int_0^1 f(\gamma_1(t))\gamma_1'(t)dt = \int_0^1 (2t^2 + it^3)(1 + 2ti)dt = \int_0^1 (2t^2 - 2t^4 + 5t^3i)dt = \frac{4}{15} + \frac{5}{4}i$$

Next, let’s integrate along the straight line segment C_2 joining 0 and $1 + i$.

Here we have $\gamma_2(t) = t + it$, $0 \leq t \leq 1$. Thus, $\gamma_2'(t) = 1 + i$, and our integral looks like
\[
\int_{C_3} f(z) \, dz = \int_{C_{31}} f(z) \, dz + \int_{C_{32}} f(z) \, dz.
\]

Finally, let’s integrate along \(C_3 \), the path consisting of the line segment from 0 to 1 together with the segment from 1 to 1 + \(i \).

We shall do this in two parts: \(C_{31} \), the line from 0 to 1; and \(C_{32} \), the line from 1 to 1 + \(i \). Then we have

\[
\int_{C_3} f(z) \, dz = \int_{C_{31}} f(z) \, dz + \int_{C_{32}} f(z) \, dz.
\]

For \(C_{31} \) we have \(\gamma(t) = t, 0 \leq t \leq 1 \). Hence,

\[
\int_{C_{31}} f(z) \, dz = \int_0^1 t^2 \, dt = \frac{1}{3}.
\]

For \(C_{32} \) we have \(\gamma(t) = 1 + it, 0 \leq t \leq 1 \). Hence,

\[
\int_{C_{32}} f(z) \, dz = \int_0^1 (1 + it) \, dt = -\frac{1}{2} + \frac{3}{2}i.
\]
Thus,

\[\int_{C_1} f(z)\,dz = \int_{C_{31}} f(z)\,dz + \int_{C_{32}} f(z)\,dz \]
\[= -\frac{1}{6} + \frac{3}{2}i. \]

Suppose there is a number \(M \) so that \(|f(z)| \leq M\) for all \(z \in C \). Then

\[\left| \int_{C} f(z)\,dz \right| = \left| \int_{a}^{\beta} f(\gamma(t))\gamma'(t)\,dt \right| \]
\[\leq \int_{a}^{\beta} |f(\gamma(t))\gamma'(t)|\,dt \]
\[\leq M \int_{a}^{\beta} |\gamma'(t)|\,dt = ML, \]

where \(L = \int_{a}^{\beta} |\gamma'(t)|\,dt \) is the length of \(C \).

Exercises

1. Evaluate the integral \(\int_{C} z\,dz \), where \(C \) is the parabola \(y = x^2 \) from 0 to 1 + i.

2. Evaluate \(\int_{C} \frac{1}{z}\,dz \), where \(C \) is the circle of radius 2 centered at 0 oriented counterclockwise.

4. Evaluate \(\int_{C} f(z)\,dz \), where \(C \) is the curve \(y = x^3 \) from \(-1 - i\) to 1 + i, and

\[f(z) = \begin{cases}
1 & \text{for } y < 0 \\
4y & \text{for } y \geq 0
\end{cases} \]

5. Let \(C \) be the part of the circle \(\gamma(t) = e^{it} \) in the first quadrant from \(a = 1 \) to \(b = i \). Find as small an upper bound as you can for \(\left| \int_{C} (z^2 - \overline{z}^4 + 5)\,dz \right| \).
6. Evaluate \(\int_C f(z) \, dz \) where \(f(z) = z + 2 \bar{z} \) and \(C \) is the path from \(z = 0 \) to \(z = 1 + 2i \) consisting of the line segment from 0 to 1 together with the segment from 1 to \(1 + 2i \).

4.3 Antiderivatives. Suppose \(D \) is a subset of the reals and \(\gamma : D \to \mathbb{C} \) is differentiable at \(t \). Suppose further that \(g \) is differentiable at \(\gamma(t) \). Then let’s see about the derivative of the composition \(g(\gamma(t)) \). It is, in fact, exactly what one would guess. First,

\[
g(\gamma(t)) = u(x(t), y(t)) + iv(x(t), y(t)),
\]

where \(g(z) = u(x, y) + iv(x, y) \) and \(\gamma(t) = x(t) + iy(t) \). Then,

\[
\frac{d}{dt} g(\gamma(t)) = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + i \left(\frac{\partial v}{\partial x} \frac{dx}{dt} + \frac{\partial v}{\partial y} \frac{dy}{dt} \right).
\]

The places at which the functions on the right-hand side of the equation are evaluated are obvious. Now, apply the Cauchy-Riemann equations:

\[
\frac{d}{dt} g(\gamma(t)) = \frac{\partial u}{\partial x} \frac{dx}{dt} - \frac{\partial v}{\partial x} \frac{dy}{dt} + i \left(\frac{\partial v}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} \right)
\]

\[
= \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) \left(\frac{dx}{dt} + i \frac{dy}{dt} \right)
\]

\[
= g'(\gamma(t)) \gamma'(t).
\]

The nicest result in the world!

Now, back to integrals. Let \(F : D \to \mathbb{C} \) and suppose \(F'(z) = f(z) \) in \(D \). Suppose moreover that \(a \) and \(b \) are in \(D \) and that \(C \subset D \) is a contour from \(a \) to \(b \). Then

\[
\int_C f(z) \, dz = \int_a^b f(\gamma(t)) \gamma'(t) \, dt,
\]

where \(\gamma : [\alpha, \beta] \to C \) describes \(C \). From our introductory discussion, we know that

\[
\frac{d}{dt} F(\gamma(t)) = F'(\gamma(t)) \gamma'(t) = f(\gamma(t)) \gamma'(t).
\]

Hence,
This is very pleasing. Note that integral depends only on the points a and b and not at all on the path C. We say the integral is \textbf{path independent}. Observe that this is equivalent to saying that the integral of f around any closed path is 0. We have thus shown that if in D the integrand f is the derivative of a function F, then any integral $\int_C f(z)dz$ for $C \subset D$ is path independent.

\textbf{Example}

Let C be the curve $y = \frac{1}{x^3}$ from the point $z = 1 + i$ to the point $z = 3 + \frac{i}{9}$. Let’s find

$$\int_C z^2 dz.$$

This is easy—we know that $F'(z) = z^2$, where $F(z) = \frac{1}{3}z^3$. Thus,

$$\int_C z^2 dz = \frac{1}{3} \left[(1 + i)^3 - \left(3 + \frac{i}{9}\right)^3 \right]$$

$$= -\frac{260}{27} - \frac{728}{2187}i$$

Now, instead of assuming f has an antiderivative, let us suppose that the integral of f between any two points in the domain is independent of path and that f is continuous. Assume also that every point in the domain D is an interior point of D and that D is connected. We shall see that in this case, f has an antiderivative. To do so, let z_0 be any point in D, and define the function F by

$$F(z) = \int_{C_z} f(z)dz,$$

where C_z is any path in D from z_0 to z. Here is important that the integral is path independent, otherwise $F(z)$ would not be well-defined. Note also we need the assumption that D is connected in order to be sure there always is at least one such path.
Now, for the computation of the derivative of F:

$$F(z + \Delta z) - F(z) = \int_{L_{\Delta z}} f(s) \, ds,$$

where $L_{\Delta z}$ is the line segment from z to $z + \Delta z$.

Next, observe that $\int_{L_{\Delta z}} ds = \Delta z$. Thus, $f(z) = \frac{1}{\Delta z} \int_{L_{\Delta z}} f(z) \, ds$, and we have

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \frac{1}{\Delta z} \int_{L_{\Delta z}} (f(s) - f(z)) \, ds.$$

Now then,

$$\left| \frac{1}{\Delta z} \int_{L_{\Delta z}} (f(s) - f(z)) \, ds \right| \leq \left| \frac{1}{\Delta z} \right| |\Delta z| \max \{ |f(s) - f(z)| : s \in L_{\Delta z} \}$$

$$\leq \max \{ |f(s) - f(z)| : s \in L_{\Delta z} \}.$$

We know f is continuous at z, and so $\lim_{\Delta z \to 0} \max \{ |f(s) - f(z)| : s \in L_{\Delta z} \} = 0$. Hence,

$$\lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{L_{\Delta z}} (f(s) - f(z)) \, ds \right)$$

$$= 0.$$
In other words, \(F'(z) = f(z) \), and so, just as promised, \(f \) has an antiderivative! Let’s summarize what we have shown in this section:

Suppose \(f : D \to \mathbb{C} \) is continuous, where \(D \) is connected and every point of \(D \) is an interior point. Then \(f \) has an antiderivative if and only if the integral between any two points of \(D \) is path independent.

Exercises

7. Suppose \(C \) is any curve from 0 to \(\pi + 2i \). Evaluate the integral

\[
\int_{C} \cos \left(\frac{z}{2} \right) dz.
\]

8. a) Let \(F(z) = \log z, -\frac{3}{4} \pi < \arg z < \frac{5}{4} \pi \). Show that the derivative \(F'(z) = \frac{1}{z} \).
 b) Let \(G(z) = \log z, -\frac{5}{4} \pi < \arg z < \frac{7}{4} \pi \). Show that the derivative \(G'(z) = \frac{1}{z} \).
 c) Let \(C_1 \) be a curve in the right-half plane \(D_1 = \{ z : \Re z \geq 0 \} \) from \(-i\) to \(i \) that does not pass through the origin. Find the integral

\[
\int_{C_1} \frac{1}{z} dz.
\]

d) Let \(C_2 \) be a curve in the left-half plane \(D_2 = \{ z : \Re z \leq 0 \} \) from \(-i\) to \(i \) that does not pass through the origin. Find the integral

\[
\int_{C_2} \frac{1}{z} dz.
\]

9. Let \(C \) be the circle of radius 1 centered at 0 with the *clockwise* orientation. Find

\[
\int_{C} \frac{1}{z} dz.
\]

10. a) Let \(H(z) = z^c, -\pi < \arg z < \pi \). Find the derivative \(H'(z) \).
 b) Let \(K(z) = z^c, -\frac{\pi}{4} < \arg z < \frac{7\pi}{4} \). Find the derivative \(K'(z) \).
 c) Let \(C \) be any path from \(-1\) to \(1 \) that lies completely in the upper half-plane and does not pass through the origin. (Upper half-plane = \(\{ z : \Im z \geq 0 \} \).) Find

4.10
\[\int_C F(z)dz, \]

where \(F(z) = z^i, -\pi < \arg z \leq \pi. \)

11. Suppose \(P \) is a polynomial and \(C \) is a closed curve. Explain how you know that \(\int_C P(z)dz = 0. \)