Chapter Eight

Series

8.1. Sequences. The basic definitions for complex sequences and series are essentially the same as for the real case. A sequence of complex numbers is a function $g : \mathbb{Z}_+ \to \mathbb{C}$ from the positive integers into the complex numbers. It is traditional to use subscripts to indicate the values of the function. Thus we write $g(n) = z_n$ and an explicit name for the sequence is seldom used; we write simply (z_n) to stand for the sequence g which is such that $g(n) = z_n$. For example, (i^n) is the sequence g for which $g(n) = i^n$.

The number L is a limit of the sequence (z_n) if given an $\varepsilon > 0$, there is an integer N_ε such that $|z_n - L| < \varepsilon$ for all $n \geq N_\varepsilon$. If L is a limit of (z_n), we sometimes say that (z_n) converges to L. We frequently write $\lim_{n \to \infty} z_n = L$. It is relatively easy to see that if the complex sequence $(z_n) = (u_n + iv_n)$ converges to L, then the two real sequences (u_n) and (v_n) each have a limit: (u_n) converges to $\text{Re}L$ and (v_n) converges to $\text{Im}L$. Conversely, if the two real sequences (u_n) and (v_n) each have a limit, then so also does the complex sequence $(u_n + iv_n)$. All the usual nice properties of limits of sequences are thus true:

$$
\lim (z_n \pm w_n) = \lim z_n \pm \lim w_n;
\lim (z_n w_n) = \lim z_n \lim w_n; \text{ and}
\lim \left(\frac{z_n}{w_n} \right) = \frac{\lim z_n}{\lim w_n}.
$$

provided that $\lim z_n$ and $\lim w_n$ exist. (And in the last equation, we must, of course, insist that $\lim w_n \neq 0$.)

A necessary and sufficient condition for the convergence of a sequence (a_n) is the celebrated Cauchy criterion: given $\varepsilon > 0$, there is an integer N_ε so that $|a_n - a_m| < \varepsilon$ whenever $n, m > N_\varepsilon$.

A sequence (f_n) of functions on a domain D is the obvious thing: a function from the positive integers into the set of complex functions on D. Thus, for each $z \in D$, we have an ordinary sequence $(f_n(z))$. If each of the sequences $(f_n(z))$ converges, then we say the sequence of functions (f_n) converges to the function f defined by $f(z) = \lim f_n(z))$. This pretty obvious stuff. The sequence (f_n) is said to converge to f uniformly on a set S if given an $\varepsilon > 0$, there is an integer N_ε so that $|f_n(z) - f(z)| < \varepsilon$ for all $n \geq N_\varepsilon$ and all $z \in S$.

Note that it is possible for a sequence of continuous functions to have a limit function that is not continuous. This cannot happen if the convergence is uniform. To see this, suppose the sequence (f_n) of continuous functions converges uniformly to f on a domain D, let $z_0 \in D$, and let $\varepsilon > 0$. We need to show there is a δ so that $|f(z_0) - f(z)| < \varepsilon$ whenever
Let’s do it. First, choose \(N \) so that \(|f_N(z) - f(z)| < \frac{\varepsilon}{3} \). We can do this because of the uniform convergence of the sequence \((f_n)\). Next, choose \(\delta \) so that \(|f_N(z_0) - f_N(z)| < \frac{\varepsilon}{3} \) whenever \(|z_0 - z| < \delta \). This is possible because \(f_N \) is continuous. Now then, when \(|z_0 - z| < \delta \), we have

\[
|f(z_0) - f(z)| = |f(z_0) - f_N(z_0) + f_N(z_0) - f_N(z) + f_N(z) - f(z)| \\
\leq |f(z_0) - f_N(z_0)| + |f_N(z_0) - f_N(z)| + |f_N(z) - f(z)| \\
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,
\]

and we have done it!

Now suppose we have a sequence \((f_n)\) of continuous functions which converges uniformly on a contour \(C \) to the function \(f \). Then the sequence \(\int_C f_n(z) \, dz \) converges to \(\int_C f(z) \, dz \). This is easy to see. Let \(\varepsilon > 0 \). Now let \(N \) be so that \(|f_n(z) - f(z)| < \frac{\varepsilon}{A} \) for \(n > N \), where \(A \) is the length of \(C \). Then,

\[
\left| \int_C f_n(z) \, dz - \int_C f(z) \, dz \right| = \left| \int_C (f_n(z) - f(z)) \, dz \right| \\
< \frac{\varepsilon}{A} A = \varepsilon
\]

whenever \(n > N \).

Now suppose \((f_n)\) is a sequence of functions each \emph{analytic} on some region \(D \), and suppose the sequence converges uniformly on \(D \) to the function \(f \). Then \(f \) is analytic. This result is in marked contrast to what happens with real functions—examples of uniformly convergent sequences of differentiable functions with a nondifferentiable limit abound in the real case. To see that this uniform limit is analytic, let \(z_0 \in D \), and let \(S = \{z : |z - z_0| < r\} \subset D \). Now consider any simple closed curve \(C \subset S \). Each \(f_n \) is analytic, and so \(\int_C f_n(z) \, dz = 0 \) for every \(n \). From the uniform convergence of \((f_n)\), we know that \(\int_C f(z) \, dz \) is the limit of the sequence \(\left(\int_C f_n(z) \, dz \right) \), and so \(\int_C f(z) \, dz = 0 \). Morera’s theorem now tells us that \(f \) is analytic on \(S \), and hence at \(z_0 \). Truly a miracle.

\section*{Exercises}

8.2
1. Prove that a sequence cannot have more than one limit. (We thus speak of the limit of a sequence.)

2. Give an example of a sequence that does not have a limit, or explain carefully why there is no such sequence.

3. Give an example of a bounded sequence that does not have a limit, or explain carefully why there is no such sequence.

4. Give a sequence \((f_n)\) of functions continuous on a set \(D\) with a limit that is not continuous.

5. Give a sequence of real functions differentiable on an interval which converges uniformly to a nondifferentiable function.

8.2 Series. A series is simply a sequence \((s_n)\) in which \(s_n = a_1 + a_2 + \ldots + a_n\). In other words, there is sequence \((a_n)\) so that \(s_n = s_{n-1} + a_n\). The \(s_n\) are usually called the partial sums. Recall from Mrs. Turner’s class that if the series \(\sum_{j=1}^{\infty} a_j\) has a limit, then it must be true that \(\lim_{n \to \infty} (a_n) = 0\).

Consider a series \(\left(\sum_{j=1}^{n} f_j(z)\right)\) of functions. Chances are this series will converge for some values of \(z\) and not converge for others. A useful result is the celebrated Weierstrass M-test: Suppose \((M_j)\) is a sequence of real numbers such that \(M_j \geq 0\) for all \(j > J\), where \(J\) is some number, and suppose also that the series \(\sum_{j=1}^{n} M_j\) converges. If for all \(z \in D\), we have \(|f_j(z)| \leq M_j\) for all \(j > J\), then the series \(\sum_{j=1}^{n} f_j(z)\) converges uniformly on \(D\).

To prove this, begin by letting \(\varepsilon > 0\) and choosing \(N > J\) so that

\[\sum_{j=m}^{n} M_j < \varepsilon\]

for all \(n, m > N\). (We can do this because of the famous Cauchy criterion.) Next, observe that
\[
\left| \sum_{j=m}^{n} f_j(z) \right| \leq \sum_{j=m}^{n} |f_j(z)| \leq \sum_{j=m}^{n} M_j < \varepsilon.
\]

This shows that \(\left(\sum_{j=1}^{n} f_j(z) \right) \) converges. To see the uniform convergence, observe that
\[
\left| \sum_{j=m}^{n} f_j(z) \right| = \left| \sum_{j=0}^{n} f_j(z) - \sum_{j=0}^{m-1} f_j(z) \right| < \varepsilon
\]
for all \(z \in D \) and \(n > m > N \). Thus,
\[
\lim_{n \to \infty} \left| \sum_{j=0}^{n} f_j(z) - \sum_{j=0}^{m-1} f_j(z) \right| = \left| \sum_{j=0}^{\infty} f_j(z) - \sum_{j=0}^{m-1} f_j(z) \right| \leq \varepsilon
\]
for \(m > N \). (The limit of a series \(\left(\sum_{j=0}^{n} a_j \right) \) is almost always written as \(\sum_{j=0}^{\infty} a_j \).)

Exercises

6. Find the set \(D \) of all \(z \) for which the sequence \(\left(\frac{z^n}{z^n-3^n} \right) \) has a limit. Find the limit.

7. Prove that the series \(\left(\sum_{j=1}^{n} a_j \right) \) converges if and only if both the series \(\left(\sum_{j=1}^{n} \text{Re} a_j \right) \) and \(\left(\sum_{j=1}^{n} \text{Im} a_j \right) \) converge.

8. Explain how you know that the series \(\left(\sum_{j=1}^{n} \left(\frac{1}{z} \right)^j \right) \) converges uniformly on the set \(|z| \geq 5 \).

8.3 **Power series.** We are particularly interested in series of functions in which the partial sums are polynomials of increasing degree:
\[
s_n(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \ldots + c_n(z - z_0)^n.
\]
(We start with $n = 0$ for esthetic reasons.) These are the so-called **power series**. Thus, a power series is a series of functions of the form \(\sum_{j=0}^{n} c_j (z - z_0)^j \).

Let’s look first at a very special power series, the so-called **Geometric series**: \[
\sum_{j=0}^{n} z^j.
\]

Here
\[
s_n = 1 + z + z^2 + \ldots + z^n, \quad \text{and} \quad z s_n = z + z^2 + z^3 + \ldots + z^{n+1}.
\]

Subtracting the second of these from the first gives us
\[
(1 - z) s_n = 1 - z^{n+1}.
\]

If $z = 1$, then we can’t go any further with this, but I hope it’s clear that the series does not have a limit in case $z = 1$. Suppose now $z \neq 1$. Then we have
\[
s_n = \frac{1}{1 - z} - \frac{z^{n+1}}{1 - z}.
\]

Now if $|z| < 1$, it should be clear that $\lim (z^{n+1}) = 0$, and so
\[
\lim \left(\sum_{j=0}^{n} z^j \right) = \lim s_n = \frac{1}{1 - z}.
\]

Or,
\[
\sum_{j=0}^{\infty} z^j = \frac{1}{1 - z}, \quad \text{for} \ |z| < 1.
\]

There is a bit more to the story. First, note that if $|z| > 1$, then the Geometric series does not have a limit (why?). Next, note that if $|z| \leq \rho < 1$, then the Geometric series converges
uniformly to $\frac{1}{1-z}$. To see this, note that

$$\left(\sum_{j=0}^{n} \rho^j \right)$$

has a limit and appeal to the Weierstrass M-test.

Clearly a power series will have a limit for some values of z and perhaps not for others. First, note that any power series has a limit when $z = z_0$. Let’s see what else we can say. Consider a power series $\left(\sum_{j=0}^{n} c_j(z-z_0)^j \right)$. Let

$$\lambda = \lim \sup \left(\sqrt{|c_j|} \right).$$

(Recall from 6th grade that $\lim \sup (a_k) = \lim (\sup \{a_k : k \geq n\})$.) Now let $R = \frac{1}{\lambda}$. (We shall say $R = 0$ if $\lambda = \infty$, and $R = \infty$ if $\lambda = 0$.) We are going to show that the series converges uniformly for all $|z-z_0| \leq \rho < R$ and diverges for all $|z-z_0| > R$.

First, let’s show the series does not converge for $|z-z_0| > R$. To begin, let k be so that

$$\frac{1}{|z-z_0|} < k < \frac{1}{R} = \lambda.$$

There are an infinite number of c_j for which $\sqrt{|c_j|} > k$, otherwise $\lim \sup \left(\sqrt{|c_j|} \right) \leq k$. For each of these c_j we have

$$|c_j(z-z_0)^j| = \left(\sqrt{|c_j|} |z-z_0| \right)^j > (k|z-z_0|)^j > 1.$$

It is thus not possible for $\lim_{n \to \infty} |c_n(z-z_0)^n| = 0$, and so the series does not converge.

Next, we show that the series does converge uniformly for $|z-z_0| \leq \rho < R$. Let k be so that

$$\lambda = \frac{1}{R} < k < \frac{1}{\rho}.$$

Now, for j large enough, we have $\sqrt{|c_j|} < k$. Thus for $|z-z_0| \leq \rho$, we have
The geometric series \(\sum_{j=0}^{n} (k\rho)^j \) converges because \(k\rho < 1 \) and the uniform convergence of \(\sum_{j=0}^{n} c_j(z-z_0)^j \) follows from the M-test.

Example

Consider the series \(\sum_{j=0}^{n} \frac{1}{j!} z^j \). Let’s compute \(R = \frac{1}{\limsup \sqrt[n]{|c_j|}} = \limsup \sqrt[n]{|j!|} \). Let \(K \) be any positive integer and choose an integer \(m \) large enough to insure that \(2^m > \frac{K^{2K}}{(2K)!} \). Now consider \(\frac{n!}{K^n} \), where \(n = 2K + m \):

\[
\frac{n!}{K^n} = \frac{(2K + m)!}{K^{2K+m}} = \frac{(2K + m)(2K + m - 1) \ldots (2K + 1)(2K)!}{K^mK^{2K}} > 2^m \frac{(2K)!}{K^{2K}} > 1
\]

Thus \(\sqrt[n]{n!} > K \). Reflect on what we have just shown: given any number \(K \), there is a number \(n \) such that \(\sqrt[n]{n!} \) is bigger than it. In other words, \(R = \limsup \sqrt[n]{|j!|} = \infty \), and so the series \(\sum_{j=0}^{n} \frac{1}{j!} z^j \) converges for all \(z \).

Let’s summarize what we have. For any power series \(\sum_{j=0}^{n} c_j(z-z_0)^j \), there is a number

\[
R = \limsup \sqrt[n]{|c_j|}
\]

such that the series converges uniformly for \(|z-z_0| \leq \rho < R \) and does not converge for \(|z-z_0| > R \). (Note that we may have \(R = 0 \) or \(R = \infty \).) The number \(R \) is called the **radius of convergence** of the series, and the set \(|z-z_0| = R \) is called the **circle of convergence**. Observe also that the limit of a power series is a function analytic inside the circle of convergence (why?).

Exercises

9. Suppose the sequence of real numbers \((a_j) \) has a limit. Prove that
\[
\lim \sup(\alpha_j) = \lim(\alpha_j).
\]

For each of the following, find the set \(D \) of points at which the series converges:

10. \(\sum_{j=0}^{n} j! z^j \).

11. \(\sum_{j=0}^{n} jz^j \).

12. \(\sum_{j=0}^{n} \frac{j^2}{3^j} z^j \).

13. \(\sum_{j=0}^{n} \frac{(-1)^j}{2^j(j!)^2} z^j \).

8.4 Integration of power series. Inside the circle of convergence, the limit

\[
S(z) = \sum_{j=0}^{\infty} c_j(z - z_0)^j
\]

is an analytic function. We shall show that this series may be integrated "term-by-term"—that is, the integral of the limit is the limit of the integrals. Specifically, if \(C \) is any contour inside the circle of convergence, and the function \(g \) is continuous on \(C \), then

\[
\int_{C} g(z)S(z)dz = \sum_{j=0}^{\infty} c_j \int_{C} g(z)(z - z_0)^j dz.
\]

Let’s see why this. First, let \(\varepsilon > 0 \). Let \(M \) be the maximum of \(|g(z)|\) on \(C \) and let \(L \) be the length of \(C \). Then there is an integer \(N \) so that

\[
\left| \sum_{j=N}^{\infty} c_j(z - z_0)^j \right| < \frac{\varepsilon}{ML}
\]
for all $n > N$. Thus,

$$\left| \int_{C} g(z) \sum_{j=n}^{\infty} c_j(z-z_0)^j \, dz \right| < ML \cdot \frac{\varepsilon}{ML} = \varepsilon,$$

Hence,

$$\left| \int_{C} g(z)S(z)dz - \sum_{j=0}^{n-1} c_j \int_{C} g(z)(z-z_0)^j/\, dz \right| = \left| \int_{C} g(z) \sum_{j=n}^{\infty} c_j(z-z_0)^j \, dz \right| < \varepsilon,$$

and we have shown what we promised.

8.5 Differentiation of power series

Again, let

$$S(z) = \sum_{j=0}^{\infty} c_j(z-z_0)^j.$$

Now we are ready to show that inside the circle of convergence,

$$S'(z) = \sum_{j=1}^{\infty} j c_j(z-z_0)^{j-1}.$$

Let z be a point inside the circle of convergence and let C be a positive oriented circle centered at z and inside the circle of convergence. Define

$$g(s) = \frac{1}{2\pi i(s-z)^2},$$

and apply the result of the previous section to conclude that

8.9
\[\int_{C} g(s)S(s)\, ds = \sum_{j=0}^{\infty} c_j \int_{C} g(s)(s - z_0)^j\, ds, \text{ or} \]
\[\frac{1}{2\pi i} \int_{C} \frac{S(s)}{(s - z)^2}\, ds = \sum_{j=0}^{\infty} c_j \frac{1}{2\pi i} \int_{C} \frac{(s - z_0)^j}{(s - z)^2}\, ds. \] Thus
\[S'(z) = \sum_{j=0}^{\infty} j c_j (z - z_0)^{j-1}, \]
as promised!

Exercises

14. Find the limit of
\[\left(\sum_{j=0}^{n} (j + 1)z^j \right). \]
For what values of \(z \) does the series converge?

15. Find the limit of
\[\left(\sum_{j=1}^{n} \frac{z^j}{j} \right). \]
For what values of \(z \) does the series converge?

16. Find a power series \(\sum_{j=0}^{n} c_j(z - 1)^j \) such that
\[\frac{1}{z} = \sum_{j=0}^{\infty} c_j(z - 1)^j, \text{ for } |z - 1| < 1. \]

17. Find a power series \(\sum_{j=0}^{n} c_j(z - 1)^j \) such that
\[
\log z = \sum_{j=0}^{\infty} c_j (z - 1)^j, \text{ for } |z - 1| < 1.
\]