Chapter Nine

Taylor and Laurent Series

9.1. **Taylor series.** Suppose f is analytic on the open disk $|z - z_0| < r$. Let z be any point in this disk and choose C to be the positively oriented circle of radius ρ, where $|z - z_0| < \rho < r$. Then for $s \in C$ we have

\[
\frac{1}{s-z} = \frac{1}{(s-z_0) - (z-z_0)} = \frac{1}{s-z_0} \left[\frac{1}{1 - \frac{s-z_0}{s-z_0}} \right] = \sum_{j=0}^{\infty} \left(\frac{z-z_0}{s-z_0} \right)^j
\]

since $\left| \frac{z-z_0}{s-z_0} \right| < 1$. The convergence is uniform, so we may integrate

\[
\int_{C} \frac{f(s)}{s-z} \, ds = \sum_{j=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C} \frac{f(s)}{(s-z_0)^{j+1}} \, ds \right) \left(z-z_0 \right)^j, \text{ or}
\]

\[
f(z) = \frac{1}{2\pi i} \int_{C} \frac{f(s)}{s-z} \, ds = \sum_{j=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C} \frac{f(s)}{(s-z_0)^{j+1}} \, ds \right) \left(z-z_0 \right)^j.
\]

We have thus produced a power series having the given analytic function as a limit:

\[
f(z) = \sum_{j=0}^{\infty} c_j (z-z_0)^j, \quad |z-z_0| < r,
\]

where

\[
c_j = \frac{1}{2\pi i} \int_{C} \frac{f(s)}{(s-z_0)^{j+1}} \, ds.
\]

This is the celebrated **Taylor Series** for f at $z = z_0$.

We know we may differentiate the series to get

\[
f'(z) = \sum_{j=1}^{\infty} j c_j (z-z_0)^{j-1}
\]
and this one converges uniformly where the series for f does. We can thus differentiate again and again to obtain

$$f^{(n)}(z) = \sum_{j=n}^{\infty} j(j-1)(j-2)\ldots(j-n+1)c_j(z-z_0)^{j-n}. $$

Hence,

$$f^{(n)}(z_0) = n!c_n, \text{ or } c_n = \frac{f^{(n)}(z_0)}{n!}.$$

But we also know that

$$c_n = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-z_0)^{n+1}} ds. $$

This gives us

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(s)}{(s-z_0)^{n+1}} ds, \text{ for } n = 0, 1, 2, \ldots.$$

This is the famous **Generalized Cauchy Integral Formula**. Recall that we previously derived this formula for $n = 0$ and 1.

What does all this tell us about the radius of convergence of a power series? Suppose we have

$$f(z) = \sum_{j=0}^{\infty} c_j(z-z_0)^j,$$

and the radius of convergence is R. Then we know, of course, that the limit function f is analytic for $|z-z_0| < R$. We showed that if f is analytic in $|z-z_0| < r$, then the series converges for $|z-z_0| < r$. Thus $r \leq R$, and so f cannot be analytic at any point z for which $|z-z_0| > R$. In other words, the circle of convergence is the largest circle centered at z_0 inside of which the limit f is analytic.
Example

Let \(f(z) = \exp(z) = e^z \). Then \(f(0) = f'(0) = \ldots = f^{(n)}(0) = \ldots = 1 \), and the Taylor series for \(f \) at \(z_0 = 0 \) is

\[
e^z = \sum_{j=0}^{\infty} \frac{1}{j!} z^j
\]

and this is valid for all values of \(z \) since \(f \) is entire. (We also showed earlier that this particular series has an infinite radius of convergence.)

Exercises

1. Show that for all \(z \),

\[
e^z = e \sum_{j=0}^{\infty} \frac{1}{j!} (z - 1)^j.
\]

2. What is the radius of convergence of the Taylor series \(\left(\sum_{j=0}^{n} c_j z^j \right) \) for \(\tanh z \)?

3. Show that

\[
\frac{1}{1 - z} = \sum_{j=0}^{\infty} \frac{(z - i)^j}{(1 - i)^{j+1}}
\]

for \(|z - i| < \sqrt{2} \).

4. If \(f(z) = \frac{1}{1 - z} \), what is \(f^{(10)}(i) \)?

5. Suppose \(f \) is analytic at \(z = 0 \) and \(f(0) = f'(0) = f''(0) = 0 \). Prove there is a function \(g \) analytic at 0 such that \(f(z) = z^3 g(z) \) in a neighborhood of 0.

6. Find the Taylor series for \(f(z) = \sin z \) at \(z_0 = 0 \).

7. Show that the function \(f \) defined by
\[
f(z) = \begin{cases}
\frac{\sin z}{z} & \text{for } z \neq 0 \\
1 & \text{for } z = 0
\end{cases}
\]

is analytic at \(z = 0 \), and find \(f'(0) \).

9.2. Laurent series. Suppose \(f \) is analytic in the region \(R_1 < |z - z_0| < R_2 \), and let \(C \) be a positively oriented simple closed curve around \(z_0 \) in this region. (Note: we include the possibilities that \(R_1 \) can be 0, and \(R_2 = \infty \).) We shall show that for \(z \notin C \) in this region

\[
f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j},
\]

where

\[
a_j = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - z_0)^{j+1}} ds, \text{ for } j = 0, 1, 2, \ldots
\]

and

\[
b_j = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - z_0)^{j+1}} ds, \text{ for } j = 1, 2, \ldots.
\]

The sum of the limits of these two series is frequently written

\[
f(z) = \sum_{j=-\infty}^{\infty} c_j (z - z_0)^j,
\]

where

\[
c_j = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - z_0)^{j+1}} ds, j = 0, \pm 1, \pm 2, \ldots.
\]

This recipe for \(f(z) \) is called a **Laurent series**, although it is important to keep in mind that it is really two series.

9.4
Okay, now let’s derive the above formula. First, let \(r_1 \) and \(r_2 \) be so that \(R_1 < r_1 \leq |z - z_0| \leq r_2 < R_2 \) and so that the point \(z \) and the curve \(C \) are included in the region \(r_1 \leq |z - z_0| \leq r_2 \). Also, let \(\Gamma \) be a circle centered at \(z \) and such that \(\Gamma \) is included in this region.

Then \(\frac{f(s)}{s - z} \) is an analytic function (of \(s \)) on the region bounded by \(C_1, C_2, \) and \(\Gamma \), where \(C_1 \) is the circle \(|z| = r_1 \) and \(C_2 \) is the circle \(|z| = r_2 \). Thus,

\[
\int_{C_2} \frac{f(s)}{s - z} \, ds = \int_{C_1} \frac{f(s)}{s - z} \, ds + \int_{\Gamma} \frac{f(s)}{s - z} \, ds.
\]

(All three circles are positively oriented, of course.) But \(\int_{\Gamma} \frac{f(s)}{s - z} \, ds = 2\pi if(z) \), and so we have

\[
2\pi if(z) = \int_{C_2} \frac{f(s)}{s - z} \, ds - \int_{C_1} \frac{f(s)}{s - z} \, ds.
\]

Look at the first of the two integrals on the right-hand side of this equation. For \(s \epsilon C_2 \), we have \(|z - z_0| < |s - z_0| \), and so

\[
\frac{1}{s - z} = \frac{1}{(s - z_0) - (z - z_0)} = \frac{1}{s - z_0} \left[\frac{1}{1 - \left(\frac{z - z_0}{s - z_0} \right)} \right] = \frac{1}{s - z_0} \sum_{j=0}^{\infty} \left(\frac{z - z_0}{s - z_0} \right)^j = \sum_{j=0}^{\infty} \frac{1}{(s - z_0)^{j+1}} (z - z_0)^j.
\]
Hence,

\[
\int_{C_2} \frac{f(s)}{s - z} \, ds = \sum_{j=0}^{\infty} \left(\int_{C_2} \frac{f(s)}{(s - z_0)^{j+1}} \, ds \right) (z - z_0)^j
\]

\[
= \sum_{j=0}^{\infty} \left(\int_{C} \frac{f(s)}{(s - z_0)^{j+1}} \, ds \right) (z - z_0)^j
\]

For the second of these two integrals, note that for \(s \in C_1 \) we have \(|s - z_0| < |z - z_0|\), and so

\[
\frac{1}{s - z} = \frac{-1}{(z - z_0) - (s - z_0)} = \frac{-1}{z - z_0} \left[\frac{1}{1 - \frac{s - z_0}{z - z_0}} \right]
\]

\[
= \frac{-1}{z - z_0} \sum_{j=0}^{\infty} \left(\frac{s - z_0}{z - z_0} \right)^j = -\sum_{j=0}^{\infty} (s - z_0)^j \frac{1}{(z - z_0)^{j+1}}
\]

\[
= -\sum_{j=1}^{\infty} (s - z_0)^{j-1} \frac{1}{(z - z_0)^j} = -\sum_{j=1}^{\infty} \left(\frac{1}{(s - z_0)^{j+1}} \right) \frac{1}{(z - z_0)^j}
\]

As before,

\[
\int_{C_1} \frac{f(s)}{s - z} \, ds = -\sum_{j=1}^{\infty} \left(\int_{C_1} \frac{f(s)}{(s - z_0)^{j+1}} \, ds \right) \frac{1}{(z - z_0)^j}
\]

\[
= -\sum_{j=1}^{\infty} \left(\int_{C} \frac{f(s)}{(s - z_0)^{j+1}} \, ds \right) \frac{1}{(z - z_0)^j}
\]

Putting this altogether, we have the Laurent series:

\[
f(z) = \frac{1}{2\pi i} \int_{C_2} \frac{f(s)}{s - z} \, ds - \frac{1}{2\pi i} \int_{C_1} \frac{f(s)}{s - z} \, ds
\]

\[
= \sum_{j=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C} \frac{f(s)}{(s - z_0)^{j+1}} \, ds \right) (z - z_0)^j + \sum_{j=1}^{\infty} \left(\frac{1}{2\pi i} \int_{C} \frac{f(s)}{(s - z_0)^{j+1}} \, ds \right) \frac{1}{(z - z_0)^j}.
\]

Example

9.6
Let f be defined by

$$f(z) = \frac{1}{z(z-1)}.$$

First, observe that f is analytic in the region $0 < |z| < 1$. Let’s find the Laurent series for f valid in this region. First,

$$f(z) = \frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1}.$$

From our vast knowledge of the Geometric series, we have

$$f(z) = -\frac{1}{z} - \sum_{j=0}^{\infty} z^j.$$

Now let’s find another Laurent series for f, the one valid for the region $1 < |z| < \infty$. First,

$$\frac{1}{z-1} = \frac{1}{z} \left[\frac{1}{1 - \frac{1}{z}} \right].$$

Now since $\left| \frac{1}{z} \right| < 1$, we have

$$\frac{1}{z-1} = \frac{1}{z} \sum_{j=0}^{\infty} z^{-j} = \sum_{j=1}^{\infty} z^{-j},$$

and so

$$f(z) = -\frac{1}{z} + \sum_{j=1}^{\infty} z^{-j} = -\frac{1}{z} + \sum_{j=1}^{\infty} z^{-j}$$

and

$$f(z) = \sum_{j=2}^{\infty} z^{-j}.$$

Exercises

8. Find two Laurent series in powers of z for the function f defined by
\begin{equation}
f(z) = \frac{1}{z^2(1-z)}
\end{equation}

and specify the regions in which the series converge to \(f(z) \).

9. Find two Laurent series in powers of \(z \) for the function \(f \) defined by

\begin{equation}
f(z) = \frac{1}{z(1+z^2)}
\end{equation}

and specify the regions in which the series converge to \(f(z) \).

10. Find the Laurent series in powers of \(z - 1 \) for \(f(z) = \frac{1}{z} \) in the region \(1 < |z - 1| < \infty \).