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Abstra
t. We evaluate the determinant det

1�i;j�n

�

�

x+y+j

x�i+2j

�

�

�

x+y+j

x+i+2j

�

�

, whi
h gives the

number of lozenge tilings of a hexagon with 
ut o� 
orners. A parti
ularly interesting feature

of this evaluation is that it requires the proof of a 
ertain hypergeometri
 identity whi
h we

a

omplish by using Gosper's algorithm in a non-automati
 fashion.

The purpose of this paper is to provide a dire
t evaluation of the determinant

det

1�i;j�n

��

x+ y + j

x � i + 2j

�

�

�

x+ y + j

x+ i+ 2j

��

: (1)

This determinant arises in our study [4℄ on the enumeration of lozenge tilings of hexagons

with 
ut o� 
orners. For example, 
onsider a hexagon with side lengths x + n, n, y, x+ n,

n, y (in 
y
li
 order) and angles of 120

Æ

of whi
h two adja
ent 
orners are 
ut o� as in

Figure 1(a).

1

Figure 1(b) shows a lozenge tiling of this region, by whi
h we mean a tiling
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To be pre
ise, from the top-left 
orner we 
ut o� a (reversed) stair
ase of the form (y � 1; y � 2; : : : ; 1),

meaning that the 
ut-o� stair
ase 
onsists of y � 1 rhombi in the �rst row, y � 2 rhombi in the se
ond row,

et
., and from the top-right 
orner we 
ut o� a stair
ase of the form (n � 1; n� 2; : : : ; 1).
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by unit rhombi with angles of 60

Æ

and 120

Æ

, referred to as lozenges. The number of these

lozenge tilings is given by the determinant (1). This is seen by 
onverting the lozenge tilings

into families (P

1

; P

2

; : : : ; P

n

) of noninterse
ting latti
e paths 
onsisting of positive unit steps,

where the path P

i

runs from (i;�i) to (x + 2i; y � i), i = 1; 2; : : : ; n and does not 
ross the

diagonal y = x � 1 (see Figure 2), and then applying the main theorem of noninterse
ting

latti
e paths [18, Lemma 1℄, [8℄, [23, Theorem 1.2℄ (see [4℄ for details and ba
kground; there

is also another 
ase in [4℄ in whi
h the determinant (1) provides the solution).
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(a) A hexagon with 
ut o� 
orners.

(b) A lozenge tiling of the hexagon with 
ut o� 
orners.

Figure 1

By Theorem 1 below, the number of the lozenge tilings of the pre
eding paragraph is
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(a) The path family 
orresponding to a lozenge tiling.
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(b) The paths made orthogonal.

Figure 2

given by a 
losed form expression. The proof of Theorem 1 that we present in this paper

2

is

primarily based on hypergeometri
 series identities. A remarkable aspe
t is that it 
ontains

an instan
e of a non-automati
 appli
ation of Gosper's algorithm [9℄ (see also [10, x5.7℄, [20,

xII.5℄), see Step 3 of the proof of Theorem 1. This is noteworthy, be
ause Gosper invented

his algorithm to automate summation, so that a non-automati
 appli
ation must be almost


onsidered as a misuse. But 
learly (and more seriously), the fa
t that Gosper's algorithm

is also useful in \
omputer-free territory" only adds to its value. (The only other instan
e

2

An alternative proof is presented in [4℄, in whi
h a 
ombinatorial argument is used to 
onvert the

determinant (1) into a di�erent determinant that was already known from [12, Theorem 10℄.
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of a non-automati
 appli
ation of Gosper's algorithm that we are aware of appears in [19℄.

However, the purpose of use there is di�erent. Roughly speaking, we use it to prove a positive

result, namely to verify the truth of an identity between 
ertain hypergeometri
 series, see

(14). In 
ontrast, Petkov�sek and Wilf use it to prove a negative result, namely that a 
ertain

binomial sum 
annot be expressed in terms of 
losed form expressions.)

Theorem 1. Let n be a positive integer, and let x and y be nonnegative integers. Then the

following determinant evaluation holds:

det

1�i;j�n

��

x+ y + j

x� i + 2j

�

�

�

x+ y + j

x+ i+ 2j

��

=

n

Y

j=1

(j � 1)! (x + y + 2j)! (x � y + 2j + 1)

j

(x + 2y + 3j + 1)

n�j

(x+ n+ 2j)! (y + n� j)!

; (2)

where the shifted fa
torial (a)

k

is de�ned by (a)

k

:= a(a + 1) � � � (a + k � 1), k � 1, and

(a)

0

:= 1.

Remark. We formulate Theorem 1 only for integral x and y. But in fa
t, with a generalized

de�nition of fa
torials and binomials (
f. [10, x5.5, (5.96), (5.100)℄, Theorem 1 would also

make sense and be true for 
omplex x and y.

Proof. We prove the determinant evaluation by \identi�
ation of fa
tors," a method that is

also applied su

essfully in [2℄, [3℄, [5℄, [6℄, [7℄, [11℄, [12℄, [13℄, [14℄, [16℄, [17℄ and [21℄ (see in

parti
ular the tutorial des
ription in [15, x2.4℄ or [13, x2℄).

First of all, we take appropriate fa
tors out of the determinant. To be pre
ise, we take

(x + y + j)!=

�

(x + n+ 2j)! (y + n� j)!

�

out of the j-th 
olumn of the determinant in (2),

j = 1; 2; : : : ; n. Thus we obtain

n

Y

i=1

(x + y + j)!

(x + n+ 2j)! (y + n� j)!

� det

1�i;j�n

((x + 2j � i+ 1)

n+i

(y + i� j + 1)

n�i

� (x + 2j + i+ 1)

n�i

(y � i� j + 1)

n+i

)

(3)

for the determinant in (2). Let us denote the determinant in (3) by D

n

(x; y). Comparison

of (2) and (3) yields that (2) will be proved on
e we are able to establish the determinant

evaluation

D

n

(x; y)

= det

1�i;j�n

((x + 2j � i+ 1)

n+i

(y + i� j + 1)

n�i

� (x+ 2j + i + 1)

n�i

(y � i� j + 1)

n+i

)

=

n

Y

j=1

(j � 1)! (x + y + j + 1)

j

(x� y + 2j + 1)

j

(x + 2y + 3j + 1)

n�j

: (4)

For the proof of (4) we pro
eed in several steps. An outline is as follows. In the �rst step

we show that

Q

n

j=1

(x � y + 2j + 1)

j

is a fa
tor of D

n

(x; y) as a polynomial in x and y. In
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the se
ond step we show that

Q

n

j=1

(x+ y + j + 1)

j

is a fa
tor of D

n

(x; y), and in the third

step we show that

Q

n

j=1

(x + 2y + 3j + 1)

n�j

is a fa
tor of D

n

(x; y). Then, in the fourth

step we determine the maximal degree of D

n

(x; y) as a polynomial in x, and the maximal

degree as a polynomial in y, whi
h turns out to be n(3n+ 1)=2 in both 
ases. On the other

hand, the degree in x, and also in y, of the produ
t on the right hand side of (4), whi
h

by the �rst three steps divides D

n

(x; y), is exa
tly n(3n+ 1)=2. Therefore we are for
ed to


on
lude that

D

n

(x; y) = C(n)

n

Y

j=1

(x� y + 2j + 1)

j

(x + y + j + 1)

j

(x + 2y + 3j + 1)

n�j

; (5)

where C(n) is a 
onstant independent of x and y. Finally, in the �fth step, we determine

the 
onstant C(n), whi
h turns out to equal

Q

n

j=1

(j � 1)!. Clearly, this would �nish the

proof of (4), and thus of (2), as we already noted.

Step 1.

Q

n

j=1

(x � y + 2j + 1)

j

is a fa
tor of D

n

(x; y). Let us 
on
entrate on a typi
al

fa
tor (x � y + 2j + l), 1 � j � n, 1 � l � j. We 
laim that for ea
h su
h fa
tor there is

a linear 
ombination of the 
olumns that vanishes if the fa
tor vanishes. More pre
isely, we


laim that for any j; l with 1 � j � n, 1 � l � j there holds

b

j+l

2




X

s=l

(j � l)

(j � s)

(j + l � 2s+ 1)

s�l

(s � l)!

(x+ 2j + l + n� s+ 1)

s�l

(x + n+ 2s + 1)

j+l�2s

(2x + 2j + l + s+ 1)

j�s

� (
olumn s of D

n

(x; x + 2j + l))

+ (
olumn j of D

n

(x; x + 2j + l)) = 0: (6)

To avoid 
onfusion, for j = l it is understood by 
onvention that the sum in (6) vanishes.

In order to verify (6), we have to 
he
k

b

j+l

2




X

s=l

(j � l)

(j � s)

(j + l � 2s+ 1)

s�l

(s � l)!

(x+ 2j + l + n� s+ 1)

s�l

(x + n+ 2s + 1)

j+l�2s

(2x + 2j + l + s+ 1)

j�s

�

�

(x + i+ 2j + l � s+ 1)

n�i

(x � i+ 2s+ 1)

n+i

� (x � i+ 2j + l � s+ 1)

n+i

(x + i+ 2s+ 1)

n�i

�

+ (x � i+ 2j + 1)

n+i

(x + i+ j + l + 1)

n�i

� (x + i + 2j + 1)

n�i

(x� i+ j + l+ 1)

n+i

= 0; (7)

whi
h is (6) restri
ted to the i-th row. The ex
eptional 
ase j = l 
an be treated immediately.

By assumption, the sum in (7) vanishes for j = l, and, by inspe
tion, also the other two

expressions in (7) vanish for j = l. So it remains to establish (7) for j > l. In terms of the

standard hypergeometri
 notation

r

F

s

�

a

1

; : : : ; a

r

b

1

; : : : ; b

s

; z

�

=

1

X

k=0

(a

1

)

k

� � � (a

r

)

k

k! (b

1

)

k

� � � (b

s

)

k

z

k

;
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this means to 
he
k

(x + i+ 2j + 1)

n�i

(x � i + 2l + 1)

n+i+j�l

(2x + 2j + 2l + 1)

j�l

�

4

F

3

�

�j

2

+

l

2

;

1

2

�

j

2

+

l

2

;�i� 2j � x; 1 + 2j + 2l+ 2x

1� j + l;

1

2

�

i

2

+ l+

x

2

; 1�

i

2

+ l +

x

2

; 1

�

�

(x � i+ 2j + 1)

n+i

(x + i+ 2l + 1)

�i+j�l+n

(2x+ 2j + 2l + 1)

j�l

�

4

F

3

�

�j

2

+

l

2

;

1

2

�

j

2

+

l

2

; i � 2j � x; 1 + 2j + 2l + 2x

1� j + l;

1

2

+

i

2

+ l+

x

2

; 1 +

i

2

+ l +

x

2

; 1

�

+ (x � i+ 2j + 1)

n+i

(x + i+ j + l + 1)

n�i

� (x + i+ 2j + 1)

n�i

(x � i+ j + l + 1)

n+i

= 0: (8)

Both

4

F

3

-series 
an be summed by means of a

4

F

3

-summation whi
h appears in a paper by

Andrews and Burge [1, Lemma 1℄ (see [12, Lemma A3℄ for a simpler proof),

4

F

3

�

�

N

2

;

1

2

�

N

2

;�a; a + b

1�N;

b

2

;

1

2

+

b

2

; 1

�

=

(a + b)

N

(b)

N

+

(�a)

N

(b)

N

;

where N is a positive integer. We have to apply the 
ase where N = j � l. This is indeed a

positive integer be
ause of our assumption j > l. Some simpli�
ation then leads to (8).

This shows that

Q

n

j=1

(x � y + 2j + 1)

j

divides D

n

(x; y).

Step 2.

Q

n

j=1

(x + y + j + 1)

j

is a fa
tor of D

n

(x; y). Let us 
on
entrate on a typi
al

fa
tor (x + y + j + l), 1 � j � n, 1 � l � j. We 
laim that for ea
h su
h fa
tor there is a

linear 
ombination of the 
olumns that vanishes if the fa
tor vanishes. More pre
isely, we


laim that for any j; l with 1 � j � n, 1 � l � j there holds

j

X

s=1+j�l

�

�

1

4

�

j�s

�

l � 1

s+ l � j � 1

�

�

(x + n+ 2s + 1)

2j�2s

(2x+ 3j + l + s + 1)

j�s

(x + j + s +

1

2

)

j�s

(x + j + l + s)

j�s

(x + j + l � n+ s)

j�s

� (
olumn s of D

n

(x;�x � j � l)) = 0: (9)

In order to verify (9), we have to 
he
k

j

X

s=1+j�l

�

�

1

4

�

j�s

�

l � 1

s+ l � j � 1

�

�

(x + n+ 2s + 1)

2j�2s

(2x+ 3j + l + s + 1)

j�s

(x + j + s +

1

2

)

j�s

(x + j + l + s)

j�s

(x + j + l � n+ s)

j�s

�

�

(�x+ i� j � l � s + 1)

n�i

(x � i+ 2s+ 1)

n+i

� (�x� i � j � l � s + 1)

n+i

(x + i+ 2s+ 1)

n�i

�

= 0;
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whi
h is (9) restri
ted to the i-th row. Equivalently, using hypergeometri
 notation, this

means to 
he
k

(�1)

l

(�i � 2j � x)

n+i

(3 + i+ 2j � 2l + x)

�2�i+2l+n

(2 + 4j + 2x)

l�1

4

l�1

(1 + 2j + x)

l�1

(

3

2

+ 2j � l + x)

l�1

(1 + 2j � n+ x)

l�1

�

4

F

3

�

1� l;

3

2

+ 2j � l + x; 1 + 2j + x; 1 + i+ 2j + x

2 + 4j + 2x; 2 +

i

2

+ j � l +

x

2

;

3

2

+

i

2

+ j � l +

x

2

; 1

�

� (�1)

l

(i� 2j � x)

n�i

(3� i+ 2j � 2l + x)

�2+i+2l+n

(2 + 4j + 2x)

l�1

4

l�1

(1 + 2j + x)

l�1

(

3

2

+ 2j � l + x)

l�1

(1 + 2j � n+ x)

l�1

�

4

F

3

�

3

2

+ 2j � l + x; 1 + 2j + x; 1 � i+ 2j + x; 1 � l

3

2

�

i

2

+ j � l +

x

2

; 2 �

i

2

+ j � l +

x

2

; 2 + 4j + 2x

; 1

�

= 0: (10)

In order to establish (10) we apply Bailey's transformation for balan
ed

4

F

3

-series (see [22,

(4.3.5.1)℄),

4

F

3

�

a; b; 
;�N

e; f; 1 + a + b+ 
� e � f �N

; 1

�

=

(e � a)

N

(f � a)

N

(e)

N

(f)

N

4

F

3

�

�N; a; 1 + a + 
� e� f �N; 1 + a + b � e� f �N

1 + a + b + 
� e� f �N; 1 + a � e�N; 1 + a � f �N

; 1

�

;

where N is a nonnegative integer, to the se
ond

4

F

3

-series in (10). Thus it is 
onverted into

the �rst

4

F

3

-series, and it is routine to 
he
k that also the remaining terms that go with

the

4

F

3

-series agree. So, the two terms on the left hand side of (10) 
an
el ea
h other, as

desired.

This establishes that

Q

n

j=1

(x + y + j + 1)

j

divides D

n

(x; y).

Step 3.

Q

n

i=1

(x + 2y + 3i+ 1)

n�i

is a fa
tor of D

n

(x; y). This is the most diÆ
ult part

of the proof of (4). Trials of �nding linear 
ombinations of 
olumns that vanish resulted in

extremely messy expressions. So, we de
ided to work with linear 
ombinations of rows this

time. Still, the 
oeÆ
ients are not as \ni
e" as in Steps 1 and 2.

Let us 
on
entrate on a typi
al fa
tor (x+2y+3i+ l), 1 � i � n, 1 � l � n� i. We 
laim

that for ea
h su
h fa
tor there is a linear 
ombination of the rows that vanishes if the fa
tor

vanishes. More pre
isely, we 
laim that for any i; l with 1 � i � n, 1 � l � n� i there holds

i+l

X

k=1

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l � k) � (row k of D

n

(�2y � 3i� l; y)) = 0; (11)

where P

l

(e; f) is the polynomial

P

l

(e; f) =

2l+1

X

r=0

a

r

(e)

r

(�f)

2l+1�r

; (12)

with the expansion 
oeÆ
ients a

r

given by

a

r

= hx

r

i

�

(x

2

+ x + 1)

l�1

(2x + 1)(x + 2)(x � 1)

�

: (13)
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Here, hx

r

ig(x) denotes the 
oeÆ
ient of x

r

in g(x).

By spe
ializing (11) to the j-th 
olumn, splitting the resulting sum into two parts in the

obvious way, and then moving one sum to the right hand side, we see that in order to verify

(11), we have to 
he
k

i+l

X

k=1

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i+ l� k) (�2y � 3i� l+ 2j � k + 1)

n+k

(y + k� j + 1)

n�k

=

i+l

X

k=1

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l�k) (�2y�3i� l+2j+k+1)

n�k

(y�k� j+1)

n+k

;

or, after adding one more term as �rst summand on both sides, equivalently,

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i+ l� k) (�2y � 3i� l+ 2j � k + 1)

n+k

(y + k� j + 1)

n�k

=

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l� k) (�2y� 3i� l+2j + k+1)

n�k

(y� k� j +1)

n+k

:

(14)

Empiri
ally, we dis
overed that apparently both sums in (14) are inde�nitely summable

(\Gosper-summable"; see [10, x5.7℄, [20, xII.5℄). It is exa
tly this fa
t whi
h makes (14)

tra
table.

In the following we will show that the sums in (14) are equal, however, without exhibiting

an expli
it expression for the sums. Instead, what we will do is to read through Gosper's

algorithm [9℄ (see also [10, x5.7℄, [20, xII.5℄), whi
h is an algorithm that solves the problem of

inde�nite summation for hypergeometri
 sums. (For any �xed l, our sums in (14) belong to

the 
ategory of hypergeometri
 sums.) In the 
ourse of reading through Gosper's algorithm

it will emerge that the sums on both sides of (14) must be equal.

Let us re
all what Gosper's algorithm does and how it works. Let t(k) be a \hyperge-

ometri
 term", i.e., be a term su
h that the ratio t(k + 1)=t(k) is a rational fun
tion in k.

Then the Gosper algorithm will �nd a hypergeometri
 term T (k) (if it exists) satisfying

t(k) = T (k + 1)� T (k): (15)

The upshot of this is that then the inde�nite summation of the term t(k) 
an be easily


arried out,

B

X

k=A

t(k) = T (B + 1)� T (A): (16)

The term T (k) is found in the following way. First, one �nds polynomials p(k), q(k), and

r(k) su
h that

t(k + 1)

t(k)

=

p(k + 1)

p(k)

q(k)

r(k + 1)

; (17)
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where q(k) and r(k) have the property that whenever (k + �) j q(k) and (k + �) j r(k)

then the di�eren
e �� � must not be a positive integer. Next, one �nds a polynomial s(k)

satisfying the re
urren
e relation

p(k) = q(k)s(k + 1) � r(k)s(k) (18)

for all k. The term T (k) is then given by

T (k) =

r(k) s(k)

p(k)

t(k): (20)

Now let us 
arry out this program with the summands in (14). First, let t(k) = t

1

(k),

where t

1

(k) is the summand of the sum on the left hand side of (14),

t

1

(k) =

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l� k) (�2y� 3i� l+2j� k+1)

n+k

(y+ k� j+1)

n�k

:

Then (17) holds with p(k) = p

1

(k), q(k) = q

1

(k), r(k) = r

1

(k), where p

1

(k) = P

l

(2i; i+l�k),

q

1

(k) = (i + l � k)(�2y � 3i � l + 2j � k), and r

1

(k) = (i + l + k)(y � j + k). So, next we

have to �nd a polynomial s

1

(k) satisfying the re
urren
e

P

l

(2i; i+ l�k) = (i+ l�k)(�2y�3i� l+2j�k)s

1

(k+1)� (i+ l+k)(y� j+k)s

1

(k): (21)

For ea
h spe
i�
 instan
e of i and l this is just routine. However, we were not able to �nd an

expli
it formula for s

1

(k) in general. Fortunately, we do not need su
h an expli
it expression.

Assuming that we have found a polynomial s

1

(k) satisfying (21), by (16) and (20) we have

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i + l � k) (�2y � 3i � l + 2j � k + 1)

n+k

(y + k � j + 1)

n�k

=

r

1

(i + l + 1) s

1

(i+ l + 1)

p

1

(i + l + 1)

t

1

(i+ l + 1)�

r

1

(0) s

1

(0)

p

1

(0)

t

1

(0)

= �

(i+ l)

i+l+1

(i+ l)!

(�2y � 3i� l + 2j + 1)

n

(y � j)

n+1

s

1

(0); (22)

the last line being due to the fa
t that t

1

(i+ l + 1) = 0.

On the other hand, for t(k) = t

2

(k), where t

2

(k) is the summand of the sum on the right

hand side of (14),

t

2

(k) =

(k + i+ l + 1)

i+l�k

(i+ l � k)!

P

l

(2i; i+ l� k) (�2y� 3i� l+2j+ k+1)

n�k

(y� k� j+1)

n+k

we may 
hoose p(k) = p

2

(k), q(k) = q

2

(k), r(k) = r

2

(k), where p

2

(k) = P

l

(2i; i + l � k),

q

2

(k) = (i + l � k)(y � j � k), and r

2

(k) = (i + l + k)(�2y � 3i � l + 2j + k). So, here we

have to �nd a polynomial s

2

(k) satisfying the re
urren
e

P

l

(2i; i+ l�k) = (i+ l�k)(y� j�k)s

2

(k+1)� (i+ l+k)(�2y�3i� l+2j+k)s

2

(k): (23)
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Again, this is just routine for ea
h spe
i�
 instan
e of i and l, but we do not know an expli
it

formula for s

2

(k) in general. Assuming that we have found a polynomial s

2

(k) satisfying

(23), by (16) and (20) we have

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i + l � k) (�2y � 3i � l + 2j + k + 1)

n�k

(y � k � j + 1)

n+k

=

r

2

(i + l + 1) s

2

(i+ l + 1)

p

2

(i + l + 1)

t

2

(i+ l + 1)�

r

2

(0) s

2

(0)

p

2

(0)

t

2

(0)

= �

(i+ l)

i+l+1

(i+ l)!

(�2y � 3i� l + 2j)

n+1

(y � j + 1)

n

s

2

(0); (24)

the last line being due to the fa
t that also t

2

(i+ l + 1) = 0.

In order to relate s

2

(k) to s

1

(k), we make the following observation: We set s

2

(k) =

~s

2

(�k+1), substitute this in the re
urren
e (23), then repla
e k by �k and 
hange the sign

on both sides of (23). Thus we obtain for ~s

2

(k) the re
urren
e

�P

l

(2i; i+ l+k) = (i+ l�k)(�2y�3i� l+2j�k)~s

2

(k+1)�(i+ l+k)(y�j+k)~s

2

(k): (25)

This is almost the same re
urren
e as the re
urren
e (21) for s

1

(k)! It is only the term on

the left hand side whi
h is di�erent! But, in fa
t, there is no di�eren
e: We 
laim that:

Claim 1: We have P

l

(e; e + 2l � f) = �P

l

(e; f).

Claim 2: There exists a unique solution for the re
urren
e (21).

Let us for the moment assume that these 
laims have been already established. Then,

be
ause of Claim 1, the re
urren
es (21) and (25) are indeed the same. Furthermore, thanks

to Claim 2, there does exist a unique solution for the re
urren
e (21), and so also for (25).

Hen
e, the solutions must be the same, i.e., s

1

(k) = ~s

2

(k), whi
h means s

1

(k) = s

2

(1� k).

In parti
ular, we have s

1

(1) = s

2

(0). A further fa
t, whi
h follows immediately from Claim 1

on repla
ing e by 2e and setting f = e + l, is that P

l

(2e; e + l) = 0. Therefore, by setting

k = 0 in (21), we obtain

0 = (i + l)(�2y � 3i� l + 2j)s

1

(1) � (i + l)(y � j)s

1

(0):

From this equation, and the previous observation that s

1

(1) = s

2

(0), we infer

s

1

(0) =

(�2y � 3i� l + 2j)

(y � j)

s

1

(1) =

(�2y � 3i � l + 2j)

(y � j)

s

2

(0):

Substitution of this relation in (22) gives

i+l

X

k=0

(k + i+ l + 1)

i+l�k

(i + l � k)!

P

l

(2i; i + l � k) (�2y � 3i � l + 2j � k + 1)

n+k

(y + k � j + 1)

n�k

= �

(i+ l)

i+l+1

(i+ l)!

(�2y � 3i� l + 2j)

n+1

(y � j + 1)

n

s

2

(0):
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Comparison of this identity with (24) shows that indeed the sums on both sides of (14) are

identi
al. This would prove (14).

So it remains to settle Claims 1 and 2.

We begin with Claim 1. By the de�nition (12) of P

l

(e; f), we have

P

l

(e; e + 2l � f) =

2l+1

X

r=0

a

r

(e)

r

(�e� 2l + f)

2l+1�r

=

2l+1

X

r=0

a

r

(e)

r

(�1)

r+1

(e+ r � f)

2l+1�r

;

where the 
oeÆ
ients a

r

are given by (13). Next we use the Chu{Vandermonde summation

(see e.g. [10, x5.1, (5.27)℄) in the form

N

X

s=0

�

N

s

�

(x)

s

(y)

N�s

= (x + y)

N

;

with N = 2l + 1� r, x = e+ r, and y = �f . Thus,

P

l

(e; e + 2l � f) =

2l+1

X

r=0

a

r

(e)

r

(�1)

r+1

2l+1�r

X

s=0

�

2l + 1� r

s

�

(e + r)

s

(�f)

2l+1�r�s

= �

2l+1

X

m=0

(e)

m

(�f)

2l+1�m

m

X

r=0

�

2l + 1� r

m� r

�

(�1)

r

a

r

:

Therefore, Claim 1 will follow immediately, if we are able to show that

m

X

r=0

�

2l + 1� r

m� r

�

(�1)

r

a

r

= a

m

: (26)

This 
an be readily done by using generating fun
tions. The de�nition (13) of the 
oeÆ
ients

a

r

is equivalent to

1

X

r=0

a

r

x

r

= (x

2

+ x+ 1)

l�1

(2x+ 1)(x + 2)(x � 1): (27)

Let us denote the right hand side of this equation by A(x). Now we multiply both sides of

(26) by x

m

, and we sum over all m = 0; 1; : : : We obtain

1

X

m=0

m

X

r=0

�

2l + 1� r

m� r

�

(�1)

r

a

r

= A(x);

and after inter
hanging summations on the left hand side and summing the (now) inner sum

over m by means of the binomial theorem,

(1 + x)

2l+1

A

�

�

x

1 + x

�

= A(x):
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It is trivial to verify this equation. Thus also the equivalent equation (26) must be true.

Due to the pre
eding 
onsiderations, this 
ompletes the proof of Claim 1.

Next we turn to Claim 2. We show that there is a unique polynomial s

1

(k) of degree 2l

that satis�es the re
urren
e (21). (We leave it as an exer
ise that the \degree 
al
ulus" of

the Gosper algorithm shows that if there is a solution to the re
urren
e (21) then it has to

be a polynomial of degree at most 2l.) So, let s

1

(k) =

P

2l

m=0


(m)(k�i� l)

m

. We substitute

this into (21), then expand everything with respe
t to the basis (k � i � l)

m

, m = 0; 1; : : :

(for the spa
e of polynomials in k), and �nally 
ompare 
oeÆ
ients of (k � i� l)

m

on both

sides of (21). This leads to the following system of equations for the 
oeÆ
ients 
(m):

a

2l+1�m

(2i)

2l+1�m

= (y+ i� l� j+m�1) 
(m�1)� (2i+2l�m)(y+ i+ l� j�m) 
(m);

m = 0; 1; : : : ; 2l + 1; (28)

where, by 
onvention, we put 
(�1) = 
(2l + 1) = 0. For 
onvenien
e, we set


(m) = (2i)

2l�m

(y + i� l � j)

2l�m

(y + i� l � j)

m

~
(m):

By substituting this in (28), we obtain the simpler system of equations

a

m

(y + i� l � j)

2l�m+1

(y + i� l� j)

m

= ~
(m� 1)� ~
(m); m = 0; 1; : : : ; 2l + 1: (29)

This is a system of 2l + 2 equations for 2l + 1 variables. (Re
all the 
onvention 
(�1) =


(2l + 1) = 0, whi
h of 
ourse implies ~
(�1) = ~
(2l + 1) = 0.) So, it is overdetermined. It

is easy to see that this inhomogeneous system of linear equations has a (unique) solution if

and only if the sum of the left hand sides of (29) over all m equals 0, i.e., if and only if

2l+1

X

m=0

a

m

(y + i� l � j)

2l�m+1

(y + i � l � j)

m

= 0: (20)

This would follow immediately from the antisymmetry property a

m

= �a

2l+1�m

, be
ause

then the m-th and (2l + 1 �m)-th summand in the sum in (20) would 
an
el ea
h other.

Indeed, the substitution x ! 1=x in (27) yields a

m

= �a

2l+1�m

. Therefore, the system of

equations (28) has indeed a unique solution, whi
h implies that there is a unique polynomial

s

1

(k) satisfying the re
urren
e (21), whi
h is exa
tly the assertion of Claim 2.

The proof that

Q

n

i=1

(x + 2y + 3i+ 1)

n�i

divides D

n

(x; y) is now 
omplete.

Step 4. D

n

(x; y) is a polynomial in x of maximal degree n(3n+1)=2, and the same is true

for the maximal degree of D

n

(x; y) in y. This is be
ause ea
h term in the de�ning expansion

of the determinant D

n

(x; y) has degree n(3n+1)=2 in x, and the same in y. Sin
e the right

hand side of (4), whi
h by Steps 1{3 divides D

n

(x; y) as a polynomial in x and y, also has

degree n(3n + 1)=2 in x, respe
tively y, D

n

(x; y) and the right hand side of (4) di�er only

by a multipli
ative 
onstant.

Step 5. The evaluation of the multipli
ative 
onstant. By the pre
eding steps we know

that (5) holds. In parti
ular, if we set y = 0, we have

det

1�i;j�n

((x + 2j � i+ 1)

n+i

(i � j + 1)

n�i

) = C(n)

n

Y

j=1

(x + j + 1)

n+j

: (31)
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(The reader should be aware that the se
ond term in the determinant D

n

(x; y), as given

by (4), vanishes for y = 0 be
ause of the presen
e of the fa
tor (y � i � j + 1)

n+i

.) The

determinant on the left hand side of (31) is a lower triangular matrix, hen
e it equals the

produ
t of its diagonal entries, whi
h is

Q

n

j=1

(x+j+1)

n+j

(n�j)!. Therefore C(n) is equal

to

Q

n

j=1

(n � j)! =

Q

n

j=1

(j � 1)!.

This �nishes the proof of (4) and thus of the Theorem. �
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