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ABSTRACT. We present a combinatorial solution to the problem of determining the number
of lozenge tilings of a hexagon with sides a, b4+ 1, b, a + 1, b, b 4+ 1, with the central unit
triangle removed. For a = b, this settles an open problem posed by Propp [7].

Let a, b, ¢ be positive integers, and denote by H the hexagon whose side-lengths are (in
cyclic order) a, b, ¢, a, b, ¢ and all whose angles have 120 degrees. The lozenge tilings (i.e.,
tilings by unit rhombi) of H can be regarded as plane partitions contained in an @ x b x ¢
box (cf. [2]), and therefore their number is given by the simple product formula [5]
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Motivated by this, Propp [7] considered the problem of enumerating the lozenge tilings
of a hexagon whose sides are alternately a and a + 1, from which the central unit triangle
has been removed (removal of a suitable unit triangle is necessary for the remaining region
to have lozenge tilings). Based on numerical evidence, he conjectured that there exists a
simple product formula for the number of tilings of these regions.

The more general question of finding the number of lozenge tilings of a hexagon with
sides a, b+1, ¢, a+1, b, c+1, with the central unit triangle removed — denote it by N(a, b, ¢)
— appeared in work of Kuperberg [4] concerning certain weighted enumerations of plane
partitions. This general question has been recently settled by Okada and Krattenthaler
[6], who proved that N (a, b, ¢) is equal to the product of four factors of type (1) (their proof
relies on a new Schur function identity they prove using the minor summation formula of
Ishikawa and Wakayama [3]).

The purpose of this paper is to give a simple product formula (with a simple combi-
natorial proof) for N(a,b,b) (this settles in particular Propp’s original question; Figure 1
shows the region corresponding to a = 2, b = 4).

Let SC/(a, b, ¢) be the number of self-complementary pane partitions that fit in an axbxe
box (see [8] for the definition). In [8] it is given a simple product formula for SC(a, b, ¢).
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THEOREM 1.
N(a,b,b) =SC(a+1,6,0)SC(a,b+ 1,04 1).

Proof. Let GG be the graph dual to the region of the triangular lattice obtained from a
hexagon of size a x (b+1) x b x (a+1) x b x (b+ 1) by removing the central unit triangle
(Figure 2(a) illustrates this for « = 2, b = 4). Any lozenge tiling of our region can be
identified with a perfect matching of G. Therefore, N(a,b,b) is just the number M(G) of
perfect matchings of G.

The graph G has a symmetry axis; let vy, va, ..., va be the vertices of GG on this axis,
as they occur from left to right. It is immediate to check that all the conditions in the
hypothesis of the Factorization Theorem of [1] are met. Applying this to G we obtain that

M(G) = 2"M(GH)M(G), (2)

where G (resp., G™) is the top (resp., bottom) connected component of the subgraph of
G obtained by removing the edges incident to the v;’s from above, for 1 <z < b, the edges
incident to the v;’s from below, for b+ 1 < i < 2b, and finally by weighting by 1/2 the
edges of these two subgraphs along the symmetry axis of G (see Figure 2(b)).

Consider now the a x (b+1)x (b+1) honeycomb graph H (the case a=2, b=4 is pictured
in Figure 3(a)); the matchings of this graph are in bijection with the plane partitions fitting
inan a x (b4 1) x (b4 1) box. According to this bijection, SC'(a,b+ 1,56+ 1) is equal to
the number of matchings of H that are invariant under rotation by 180 degrees.
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Let Hy be the subgraph of H induced by the vertices on or above its horizontal symmetry
axis ¢ (the boundary of Hy is shown in thick solid lines in Figure 3(a)). Label the vertices
of Hy on £ according to their distance to the center of H (the two closest vertices are
labeled 1, the next two closest 2, and so on). Denote by Hs the graph obtained from H;
by identifying vertices with the same label (if two edges have both endpoints identified
they are considered identical; note that the edge whose endpoints are labeled 1 gives rise
to a loop). The matchings of H invariant under rotation by 180 degrees can be identified
with the matchings of Hs. Therefore,

M(Hy) = SC(a,b+1,b+1). (3)

The graph H, can be symmetrically embedded in the plane. The symmetry axis contains
precisely b+ 1 of its vertices. Therefore, if b is even, all perfect matchings of H» contain
the loop at the vertex labeled 1 (henceforth referred to simply as the loop), while for odd
b none of them contains it.

Suppose b is even (the case b odd is treated similarly). Since all matchings of Hs
contain the loop, we may remove it (together with the vertex labeled 1) without changing
the number of matchings of our graph; for the sake of notational simplicity, denote the
resulting graph still by Ha.

Even though H, is not “separated” by its symmetry axis in the sense of [1], the variant
of the Factorization Theorem in [1,Section 7] is applicable and yields

M(Hs) = 222 M (Hs), (4)

where Hj is the graph obtained from H; by removing the edges incident from above to the
leftmost b+ 2 vertices on £ and then weighting the edges along £ of the remaining subgraph
by 1/2. However, remarkably, the graph obtained from Hs by removing the vertices
matched by forced edges is isomorphic to GT (see Figure 3(b)). We obtain therefore from
(3) and (4) that

M(GY) =2725C(a, b+ 1,0+ 1). (5)

To determine M (G ™), take H to be the (a + 1) x b x b honeycomb graph. Construct
the graphs H; and I as before (see Figure 4(a)). Since the symmetry axis of Hy contains
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now b vertices (and b is even), no perfect matching of iy contains the loop, and therefore
we may replace Ha by its subgraph obtained by removing this loop (and keeping the vertex
labeled 1). Applying the variant of the Factorization Theorem in [1,Section 7] we obtain

M(Hs) = 2Y/2M(Hs), (6)

where Hj is the graph obtained from H; by removing the edges incident from above to the
leftmost b vertices on £ and then weighting the edges along ¢ of the remaining subgraph
by 1/2. However, again, the graph obtained from Hs by removing the vertices matched by
forced edges is isomorphic to the subgraph of G~ left after removing its vertices matched

by forced edges (see Figure 4(b)). Since now M(Hsz) = SC(a+ 1,b,b), (6) implies

M(G™) =27%25C(a +1,b,b). (7)
The statement of the theorem follows from (2), (5) and (7).
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