Section 3.4

Solution Sets

Plan For Today

Today we will learn to describe and draw the solution set of an arbitrary system of linear equations $A x=b$, using spans.

Recall: the solution set is the collection of all vectors x such that $A x=b$ is true.

Last time we discussed the set of vectors b for which $A x=b$ has a solution.
We also described this set using spans, but it was a different problem.

Homogeneous Systems

Everything is easier when $b=0$, so we start with this case.

Definition

A system of linear equations of the form $A x=0$ is called homogeneous.
These are linear equations where everything to the right of the $=$ is zero.
The opposite is:

Definition

A system of linear equations of the form $A x=b$ with $b \neq 0$ is called inhomogeneous.

A homogeneous system always has the solution $x=0$. This is called the trivial solution. The nonzero solutions are called nontrivial.

Observation

$$
A x=0 \text { has a nontrivial solution }
$$

\Longleftrightarrow there is a free variable
$\Longleftrightarrow A$ has a column with no pivot.

Homogeneous Systems

Example

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 4 \\
2 & -1 & 2 \\
1 & 0 & 1
\end{array}\right) ?
$$

We know how to do this: first form an augmented matrix and row reduce.

$$
\left(\begin{array}{rrr|r}
1 & 3 & 4 & 0 \\
2 & -1 & 2 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \quad \underset{\text { row reduce }}{\text { mumun }}\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The only solution is the trivial solution $x=0$.

Observation

Since the last column (everything to the right of the $=$) was zero to begin, it will always stay zero! So it's not really necessary to write augmented matrices in the homogeneous case.

Homogeneous Systems

Example

Question

What is the solution set of $A x=0$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) ? \\
& \begin{array}{c}
\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right)
\end{array} \begin{array}{c}
\text { row reduce } \\
\text { mwnum } \\
\text { equation } \\
\text { mamm }
\end{array}\left(\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right) \\
& \underset{\text { parametric form }}{\text { mammum } \rightarrow}\left\{\begin{array}{l}
x_{1}=3 x_{2} \\
x_{2}=x_{2}
\end{array}\right. \\
& \underset{\text { parametric vector form }}{\text { mmmmmmmmm } \rightarrow} \quad x=\binom{x_{1}}{x_{2}}=x_{2}\binom{3}{1} \text {. }
\end{aligned}
$$

This last equation is called the parametric vector form of the solution.
It is obtained by listing equations for all the variables, in order, including the free ones, and making a vector equation.

Homogeneous Systems

Example, continued

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) ?
$$

Answer: $x=x_{2}\binom{3}{1}$ for any x_{2} in \mathbf{R}. The solution set is $\operatorname{Span}\left\{\binom{3}{1}\right\}$.

Note: one free variable means the solution set is a line in $\mathbf{R}^{2}(2=\#$ variables = \# columns).

Homogeneous Systems

Example

Question

What is the solution set of $A x=0$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 2 & -4
\end{array}\right) ? \\
& \left(\begin{array}{lll}
1 & -1 & 2 \\
2 & -2 & 4
\end{array}\right) \quad \text { row reduce } \quad\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 0 & 0
\end{array}\right) \\
& \text { equation } \\
& \text { munnu } x_{1}-x_{2}+2 x_{3}=0 \\
& \underset{\text { parametric form }}{\text { mummunn }}\left\{\begin{array}{l}
x_{1}=x_{2}-2 x_{3} \\
x_{2}=x_{2} \\
x_{3}=x_{3}
\end{array}\right. \\
& \underset{\sim}{\text { parametric vector form }} \underset{m_{m}}{\text { munnumunn }} \rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \text {. }
\end{aligned}
$$

Homogeneous Systems

Example, continued

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 2 & -4
\end{array}\right) ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)\right\}$.

[interactive]

Note: two free variables means the solution set is a plane in $\mathbf{R}^{3}(3=\#$ variables $=\#$ columns).

Homogeneous Systems

Example

Question

What is the solution set of $A x=0$, where $A=$

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{array}\right) \quad \underset{\sim}{\text { row reduce }}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\text { parametric form }}{\text { munnumunu }}\left\{\begin{array}{rr}
x_{1}=8 x_{3}+7 x_{4} \\
x_{2}= & -4 x_{3}-3 x_{4} \\
x_{3}= & x_{3} \\
x_{4}= & x_{4}
\end{array}\right. \\
& \underset{\sim}{\text { parametric vector form }} \underset{\text { manmmmuman }}{\text { manm }} x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right) \text {. }
\end{aligned}
$$

Homogeneous Systems

Example, continued

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{array}\right) ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{c}8 \\ -4 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}7 \\ -3 \\ 0 \\ 1\end{array}\right)\right\}$.

[not pictured here]

Note: two free variables means the solution set is a plane in $\mathbf{R}^{4}(4=\#$ variables $=\#$ columns).

Parametric Vector Form

Let A be an $m \times n$ matrix. Suppose that the free variables in the homogeneous equation $A x=0$ are $x_{i}, x_{j}, x_{k}, \ldots$

Then the solutions to $A x=0$ can be written in the form

$$
x=x_{i} v_{i}+x_{j} v_{j}+x_{k} v_{k}+\cdots
$$

for some vectors $v_{i}, v_{j}, v_{k}, \ldots$ in \mathbf{R}^{n}, and any scalars $x_{i}, x_{j}, x_{k}, \ldots$
The solution set is

$$
\operatorname{Span}\left\{v_{i}, v_{j}, v_{k}, \ldots\right\}
$$

The equation above is called the parametric vector form of the solution.
It is obtained by listing equations for all the variables, in order, including the free ones, and making a vector equation.

Poll

Poll

How many solutions can there be to a homogeneous system with more equations than variables?
A. 0
B. 1
C. ∞

The trivial solution is always a solution to a homogeneous system, so answer A is impossible.

This matrix has only one solution to $A x=0$: [interactive]

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

This matrix has infinitely many solutions to $A x=0$:
[interactive]

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

Inhomogeneous Systems

Example

Question

What is the solution set of $A x=b$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) \quad \text { and } \quad b=\binom{-3}{-6} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\text { parametric form }}{\text { punnumun } \rightarrow}\left\{\begin{array}{l}
x_{1}=3 x_{2}-3 \\
x_{2}=x_{2}+0
\end{array}\right. \\
& \underset{\text { parametric vector form }}{\text { munnmunnumun }} \quad x=\binom{x_{1}}{x_{2}}=x_{2}\binom{3}{1}+\binom{-3}{0} \text {. }
\end{aligned}
$$

The only difference from the homogeneous case is the constant vector $p=\binom{-3}{0}$.

Note that p is itself a solution: take $x_{2}=0$.

Inhomogeneous Systems

Example, continued

Question

What is the solution set of $A x=b$, where

$$
A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) \quad \text { and } \quad b=\binom{-3}{-6} ?
$$

Answer: $x=x_{2}\binom{3}{1}+\binom{-3}{0}$ for any x_{2} in \mathbf{R}.
This is a translate of Span $\left\{\binom{3}{1}\right\}$: it is the parallel line through $p=\binom{-3}{0}$.

It can be written

$$
\operatorname{Span}\left\{\binom{3}{1}\right\}+\binom{-3}{0} .
$$

[interactive]

Inhomogeneous Systems

Example

Question

What is the solution set of $A x=b$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 2 & -4
\end{array}\right) \quad \text { and } \quad b=\binom{1}{-2} \text { ? } \\
& \left(\begin{array}{rrr|r}
1 & -1 & 2 & 1 \\
-2 & 2 & -4 & -2
\end{array}\right) \quad \stackrel{\text { row reduce }}{\text { mumpun }}\left(\begin{array}{rrr|r}
1 & -1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \text { equation } \\
& \text { munnu } x_{1}-x_{2}+2 x_{3}=1 \\
& \underset{\text { parametric form }}{\text { mamman }}\left\{\begin{array}{l}
x_{1}=x_{2}-2 x_{3}+1 \\
x_{2}=x_{2} \\
x_{3}=x_{3}
\end{array}\right. \\
& \underset{\text { parametric vector form }}{\text { pmanmannman }} x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \text {. }
\end{aligned}
$$

Inhomogeneous Systems

Example, continued

Question

What is the solution set of $A x=b$, where

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 2 & -4
\end{array}\right) \quad \text { and } \quad b=\binom{1}{-2} ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)\right\}+\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

The solution set is a translate of

$$
\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)\right\}:
$$

it is the parallel plane through

$$
p=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

[interactive]

Homogeneous vs. Inhomogeneous Systems

Key Observation

The set of solutions to $A x=b$, if it is nonempty, is obtained by taking one specific or particular solution p to $A x=b$, and adding all solutions to $A x=0$.

Why? If $A p=b$ and $A x=0$, then

$$
A(p+x)=A p+A x=b+0=b
$$

so $p+x$ is also a solution to $A x=b$.
We know the solution set of $A x=0$ is a span. So the solution set of $A x=b$ is a translate of a span: it is parallel to a span. (Or it is empty.)

This works for any specific solution p : it doesn't have to be the one produced by finding the parametric vector form and setting the free variables all to zero, as we did before.
[interactive 1] [interactive 2]

Solution Sets and Column Spans

Very Important
Let A be an $m \times n$ matrix. There are now two completely different things you know how to describe using spans:

- The solution set: for fixed b, this is all x such that $A x=b$.
- This is a span if $b=0$, or a translate of a span in general (if it's consistent).
- Lives in \mathbf{R}^{n}.
- Computed by finding the parametric vector form.
- The column span: this is all b such that $A x=b$ is consistent.
- This is the span of the columns of A.
- Lives in \mathbf{R}^{m}.

Don't confuse these two geometric objects!
Much of the first midterm tests whether you understand both.

Summary

- The solution set to a homogeneous system $A x=0$ is a span. It always contains the trivial solution $x=0$.
- The solution set to a nonhomogeneous system $A x=b$ is either empty, or it is a translate of a span: namely, it is a translate of the solution set of $A x=0$.
- The solution set to $A x=b$ can be expressed as a translate of a span by computing the parametric vector form of the solution.
- The solution set to $A x=b$ and the span of the columns of A (from the previous lecture) are two completely different things, and you have to understand them separately.

