Section 3.4

Solution Sets

Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans.

Recall: the **solution set** is the collection of all vectors x such that Ax = b is true.

Last time we discussed the set of vectors b for which Ax = b has a solution.

We also described this set using spans, but it was a different problem.

Everything is easier when b = 0, so we start with this case.

Definition

A system of linear equations of the form Ax = 0 is called **homogeneous**.

These are linear equations where everything to the right of the = is zero. The opposite is:

Definition

A system of linear equations of the form Ax = b with $b \neq 0$ is called **inhomogeneous.**

A homogeneous system always has the solution x = 0. This is called the trivial solution. The nonzero solutions are called nontrivial.

Homogeneous Systems Example

Question

What is the solution set of Ax = 0, where

$$egin{array}{cccc} {m A} = egin{pmatrix} 1 & 3 & 4 \ 2 & -1 & 2 \ 1 & 0 & 1 \end{pmatrix}?$$

We know how to do this: first form an augmented matrix and row reduce.

$$\begin{pmatrix} 1 & 3 & 4 & | & 0 \\ 2 & -1 & 2 & | & 0 \\ 1 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}.$$

The only solution is the trivial solution x = 0.

Observation Since the last column (everything to the right of the =) was zero to begin, it will always stay zero! So it's not really necessary to write augmented matrices in the homogeneous case.

Homogeneous Systems Example

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix}?$$

$$\begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & -3 \\ 0 & 0 \end{pmatrix}$$

$$\stackrel{\text{equation}}{\xrightarrow{\text{row reduce}}} x_1 - 3x_2 = 0$$

$$\stackrel{\text{parametric form}}{\xrightarrow{\text{row reduce}}} \begin{cases} x_1 = 3x_2 \\ x_2 = x_2 \end{cases}$$

$$\stackrel{\text{parametric vector form}}{\xrightarrow{\text{row reduce}}} x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

This last equation is called the parametric vector form of the solution.

It is obtained by listing equations for all the variables, in order, including the free ones, and making a vector equation.

Homogeneous Systems Example, continued

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix}?$$

Answer:
$$x = x_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 for any x_2 in **R**. The solution set is Span $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$.

Note: one free variable means the solution set is a line in \mathbf{R}^2 (2 = # variables = # columns).

Homogeneous Systems Example

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix}?$$

$$\stackrel{1}{2} \stackrel{-1}{-2} \stackrel{2}{4} \stackrel{\text{row reduce}}{\xrightarrow{}} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\stackrel{\text{equation}}{\xrightarrow{}} x_1 - x_2 + 2x_3 = 0$$

$$\stackrel{\text{parametric form}}{\xrightarrow{}} \begin{cases} x_1 = x_2 - 2x_3 \\ x_2 = x_2 \\ x_3 = & x_3 \end{cases}$$

$$\stackrel{\text{parametric vector form}}{\xrightarrow{}} x_2 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}.$$

Homogeneous Systems

Example, continued

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix}?$$
Answer: Span $\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}$.

Note: *two* free variables means the solution set is a *plane* in \mathbf{R}^3 (3 = # variables = # columns).

Homogeneous Systems Example

Question

What is the solution set of Ax = 0, where A =

 $\begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & -8 & -t \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{array}{c} \text{equations} \\ & & \\ \end{array} \begin{cases} x_1 & -8x_3 - 7x_4 = 0 \\ & & x_2 + 4x_3 + 3x_4 = 0 \end{cases}$ parametric form $\begin{cases}
x_1 = 8x_3 + 7x_4 \\
x_2 = -4x_3 - 3x_4 \\
x_3 = x_3
\end{cases}$ parametric vector form $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \end{pmatrix}.$

Homogeneous Systems

Example, continued

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix}?$$

Answer: Span
$$\left\{ \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

[not pictured here]

Note: *two* free variables means the solution set is a *plane* in \mathbf{R}^4 (4 = # variables = # columns).

Let A be an $m \times n$ matrix. Suppose that the free variables in the homogeneous equation Ax = 0 are x_i, x_j, x_k, \ldots

Then the solutions to Ax = 0 can be written in the form

 $x = x_i v_i + x_j v_j + x_k v_k + \cdots$

for some vectors v_i, v_j, v_k, \ldots in \mathbf{R}^n , and any scalars x_i, x_j, x_k, \ldots

The solution set is

$$\mathsf{Span}\{v_i, v_j, v_k, \ldots\}.$$

The equation above is called the parametric vector form of the solution.

It is obtained by listing equations for all the variables, in order, including the free ones, and making a vector equation.

The trivial solution is always a solution to a homogeneous system, so answer A is impossible.

This matrix has only one solution to Ax = 0: [interactive]

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

This matrix has infinitely many solutions to Ax = 0: [interactive]

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Inhomogeneous Systems Example

Question

What is the solution set of Ax = b, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \text{ and } b = \begin{pmatrix} -3 \\ -6 \end{pmatrix}?$$

$$\begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & -3 \\ 0 & 0 \end{pmatrix} \xrightarrow{\text{organization}} x_1 - 3x_2 = -3$$

$$\begin{array}{c} \text{parametric form} \\ \text{with equation} \\ x_2 = x_2 + 0 \end{array}$$

$$\begin{array}{c} x_1 = 3x_2 - 3 \\ x_2 = x_2 + 0 \\ \text{parametric vector form} \\ \text{with equation} \\ x_1 = 3x_2 - 3 \\ x_2 = x_2 + 0 \\ \end{array}$$

The only difference from the homogeneous case is the constant vector $p = {-3 \choose 0}$.

Note that *p* is itself a solution: take $x_2 = 0$.

Inhomogeneous Systems

Example, continued

Question

What is the solution set of Ax = b, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} -3 \\ -6 \end{pmatrix}?$$

Answer:
$$x = x_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
 for any x_2 in **R**.
This is a *translate* of Span $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$: it is the parallel line through $p = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$.

It can be written

$$\mathsf{Span}\left\{ \begin{pmatrix} \mathbf{3} \\ \mathbf{1} \end{pmatrix} \right\} + \begin{pmatrix} -3 \\ 0 \end{pmatrix}.$$

[interactive]

Inhomogeneous Systems Example

Question

What is the solution set of Ax = b, where

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}?$$

$$\begin{pmatrix} 1 & -1 & 2 & | & 1 \\ -2 & 2 & -4 & | & -2 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & -1 & 2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\stackrel{\text{equation}}{\xrightarrow{\text{row reduce}}} x_1 - x_2 + 2x_3 = 1$$

$$\stackrel{\text{parametric form}}{\xrightarrow{\text{row reduce}}} \begin{cases} x_1 = x_2 - 2x_3 + 1 \\ x_2 = x_2 \\ x_3 = & x_3 \end{cases}$$

$$\stackrel{\text{parametric vector form}}{\xrightarrow{\text{row reduce}}} x_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Inhomogeneous Systems

Example, continued

Question

What is the solution set of Ax = b, where

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}?$$
Answer: Span $\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$
The solution set is a
$$Span \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
it is the parallel pla
$$p = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
[interactive]

a *translate* of

Span
$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1 \end{pmatrix} \right\}$$
 :

ne through

$$p = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
.

Homogeneous vs. Inhomogeneous Systems

Key Observation

The set of solutions to Ax = b, if it is nonempty, is obtained by taking one **specific** or **particular solution** p to Ax = b, and adding all solutions to Ax = 0.

Why? If Ap = b and Ax = 0, then

$$A(p+x) = Ap + Ax = b + 0 = b,$$

so p + x is also a solution to Ax = b.

We know the solution set of Ax = 0 is a span. So the solution set of Ax = b is a *translate* of a span: it is *parallel* to a span. (Or it is empty.)

This works for *any* specific solution p: it doesn't have to be the one produced by finding the parametric vector form and setting the free variables all to zero, as we did before.

[interactive 1] [interactive 2]

Don't confuse these two geometric objects!

Much of the first midterm tests whether you understand both.

[interactive]

Summary

- The solution set to a **homogeneous** system Ax = 0 is a span. It always contains the **trivial solution** x = 0.
- The solution set to a **nonhomogeneous** system Ax = b is either empty, or it is a translate of a span: namely, it is a translate of the solution set of Ax = 0.
- The solution set to Ax = b can be expressed as a translate of a span by computing the **parametric vector form** of the solution.
- The solution set to Ax = b and the span of the columns of A (from the previous lecture) are two completely different things, and you have to understand them separately.