Sections 3.7 and 3.9

Basis, Dimension, and the Rank and Basis Theorems

Subspaces Reminder

Recall: a subspace of \mathbf{R}^n is the same thing as a span, except we haven't computed a spanning set yet.

For example, Col A and Nul A for a matrix A.

There are lots of choices of spanning set for a given subspace.

Are some better than others?

Basis of a Subspace

What is the *smallest number* of vectors that are needed to span a subspace?

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in V such that:

1. $V = \operatorname{Span}\{v_1, v_2, \ldots, v_m\}$, and
2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

- 1. $V = \operatorname{Span}\{v_1, v_2, \dots, v_m\}$, and 2. $\{v_1, v_2, \dots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Why is a basis the smallest number of vectors needed to span?

Recall: linearly independent means that every time you add another vector, the span gets bigger.

Hence, if we remove any vector, the span gets smaller: so any smaller set can't span V.

Important

A subspace has many different bases, but they all have the same number of vectors.

Bases of R²

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that span \mathbf{R}^2 and are linearly independent. $\{e_1, e_2\}$ is one basis.

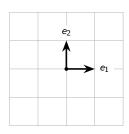
- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent because they are not collinear.

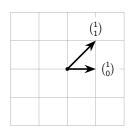
Question

What is another basis for \mathbb{R}^2 ?

Any two nonzero vectors that are not collinear. $\left\{ \binom{1}{0}, \binom{1}{1} \right\}$ is also a basis.

- 1. They span: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every row.
- 2. They are linearly independent: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every column.





The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n . The identity matrix has columns e_1, e_2, \dots, e_n .

- 1. They span: I_n has a pivot in every row.
- 2. They are linearly independent: I_n has a pivot in every column.

In general: $\{v_1, v_2, \dots, v_n\}$ is a basis for \mathbb{R}^n if and only if the matrix

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix}$$

has a pivot in every row and every column, i.e. if A is invertible.

Sanity check: we have shown that dim $\mathbf{R}^n = n$.

Example

Let

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x + 3y + z = 0 \right\} \qquad \mathcal{B} = \left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \right\}.$$

Verify that \mathcal{B} is a basis for V. (So dim V=2: it is a plane.) [interactive]

0. In V: both vectors are in V because

$$-3+3(1)+0=0$$
 and $0+3(1)+(-3)=0$.

1. Span: If $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is in V, then $y = -\frac{1}{3}(x+z)$, so

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = -\frac{x}{3} \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} - \frac{z}{3} \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}.$$

2. Linearly independent:

$$c_1\begin{pmatrix} -3\\1\\0\end{pmatrix}+c_2\begin{pmatrix} 0\\1\\-3\end{pmatrix}=0 \implies \begin{pmatrix} -3c_1\\c_1+c_2\\-3c_2\end{pmatrix}=\begin{pmatrix} 0\\0\\0\end{pmatrix} \implies c_1=c_2=0.$$

Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution to Ax = 0 always form a basis for Nul A.

Example

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c} \text{parametric} \\ \text{vector} \\ \text{form} \\ \text{form} \\ \text{***********} \quad x = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{basis of}} \left\{ \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}$$

- 1. The vectors span Nul A by construction (every solution to Ax = 0 has this form).
- Can you see why they are linearly independent? (Look at the last two rows.)

Basis for Col A

Fact

The pivot columns of A always form a basis for Col A.

Warning: I mean the pivot columns of the *original* matrix A, not the row-reduced form. (Row reduction changes the column space.)

Example

$$A = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 5 \\ 0 \\ -2 \end{pmatrix} \qquad \begin{array}{c} \text{rref} \\ \text{www} \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 0 \\ -8 \\ -7 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

pivot columns = basis www.pivot.columns in rref

So a basis for Col A is

$$\left\{\begin{pmatrix}1\\-2\\2\end{pmatrix},\,\begin{pmatrix}2\\-3\\4\end{pmatrix}\right\}.$$

Why? See slides on linear independence.

The Rank Theorem

Recall:

- ▶ The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A. The **nullity** of A, written nullity A, is the dimension of the solution set of Ax = 0.

Observe:

```
rank A = \dim \operatorname{Col} A = \operatorname{the} number of columns with pivots nullity A = \dim \operatorname{Nul} A = \operatorname{the} number of free variables = \operatorname{the} number of columns without pivots.
```

Rank Theorem

If A is an $m \times n$ matrix, then

```
\operatorname{rank} A + \operatorname{nullity} A = n = \operatorname{the number of columns of} A.
```

In other words, [interactive 1] [interactive 2] (dimension of column span) + (dimension of solution set) = (number of variables).

The Rank Theorem

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$
basis of Col A free variables

A basis for Col A is

$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \ \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \right\},\,$$

so rank $A = \dim \operatorname{Col} A = 2$.

Since there are two free variables x_3, x_4 , the parametric vector form for the solutions to Ax = 0 is

$$x = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{basis for Nul } A} \left\{ \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Thus nullity $A = \dim \text{Nul } A = 2$.

The Rank Theorem says 2 + 2 = 4.

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- ightharpoonup Any m linearly independent vectors in V form a basis for V.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

Upshot

If you already know that dim V=m, and you have m vectors $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ in V, then you only have to check *one* of

- 1. \mathcal{B} is linearly independent, or
- 2. \mathcal{B} spans V

in order for $\mathcal B$ to be a basis.

Example: any three linearly independent vectors form a basis for \mathbb{R}^3 .

Summary

- ▶ A basis of a subspace is a minimal set of spanning vectors.
- There are recipes for computing a basis for the column space and null space of a matrix.
- ▶ The **dimension** of a subspace is the number of vectors in any basis.
- The rank theorem says the dimension of the column space of a matrix, plus the dimension of the null space, is the number of columns of the matrix.
- ▶ The **basis theorem** says that if you already know that dim *V* = *m*, and you have *m* vectors in *V*, then you only have to check if they span *or* they're linearly independent to know they're a basis.