Math 1553 Supplement, §3.1 and §3.2

1. Consider the augmented matrix
\[
\begin{pmatrix}
2 & -2 & 2 & 0 \\
1 & -3 & -4 & -9 \\
3 & -1 & 8 & 9
\end{pmatrix}
\]

Question: Does the corresponding linear system have a solution? If so, what is the solution set?

a) Formulate this question as a vector equation.
b) Formulate this question as a system of linear equations.
c) What does this mean in terms of spans?
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.
f) Find a different solution in parts (e) and (d).

2. Let
\[
v_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}, \quad w = \begin{pmatrix} 2 \\ -4 \\ 8 \end{pmatrix}.
\]

Question: Is \(w \) a linear combination of \(v_1 \) and \(v_2 \)? In other words, is \(w \) in \(\text{Span}\{v_1, v_2\} \)?

a) Formulate this question as a vector equation.
b) Formulate this question as a system of linear equations.
c) Formulate this question as an augmented matrix.
d) Answer the question using the interactive demo.
e) Answer the question using row reduction.

3. Let
\[
A = \begin{pmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}
\]

Is \(b \) in the span of the columns of \(A \)? In other words, is \(b \) a linear combination of the columns of \(A \)? Justify your answer.

4. Consider the vector equation
\[
x \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + y \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix} + z \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} -5 \\ -1 \\ -2 \end{pmatrix}.
\]

Question: Is there a solution? If so, what is the solution set?

a) Formulate this question as an augmented matrix.
b) Formulate this question as a system of linear equations.

c) What does this mean in terms of spans?

d) Answer the question using the interactive demo.

e) Answer the question using row reduction.

5. Decide if each of the following statements is true or false. If it is true, prove it; if it is false, provide a counterexample.

a) Every set of four or more vectors in \(\mathbb{R}^3 \) will span \(\mathbb{R}^3 \).

b) The span of any set contains the zero vector.