Math 1553 Supplement §3.5-3.7, 3.9, 4.1

Solutions

1. Justify why each of the following true statements can be checked without row reduction.
a) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ \pi\end{array}\right),\left(\begin{array}{c}0 \\ \sqrt{2} \\ 0\end{array}\right)\right\}$ is linearly independent.
b) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right)\right\}$ is linearly independent.
c) $\left\{\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is linearly dependent.

Solution.

a) You can eyeball linear independence: if

$$
x\left(\begin{array}{l}
3 \\
3 \\
4
\end{array}\right)+y\left(\begin{array}{l}
0 \\
0 \\
\pi
\end{array}\right)+z\left(\begin{array}{c}
0 \\
\sqrt{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
3 x \\
3 x+y \sqrt{2} \\
4 x+\pi z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

then $x=0$, so $y=z=0$ too.
b) Since the first coordinate of $\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$ is nonzero, $\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$ cannot be in the span of $\left\{\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right)\right\}$. And $\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right)$ is not in the span of $\left\{\left(\begin{array}{l}0 \\ 5 \\ 7\end{array}\right)\right\}$ because it is not a multiple. Hence the span gets bigger each time you add a vector, so they're linearly independent.
c) Any four vectors in \mathbf{R}^{3} are linearly dependent; you don't need row reduction for that.
2. Consider the colors on the right. For which h is

$$
\left\{\left(\begin{array}{c}
180 \\
50 \\
200
\end{array}\right),\left(\begin{array}{l}
100 \\
150 \\
100
\end{array}\right),\left(\begin{array}{c}
116 \\
130 \\
h
\end{array}\right)\right\}
$$

linearly dependent? What does that say about the corresponding color?

Solution.

The vectors

$$
\left(\begin{array}{c}
180 \\
50 \\
200
\end{array}\right), \quad\left(\begin{array}{l}
100 \\
150 \\
100
\end{array}\right), \quad\left(\begin{array}{c}
116 \\
130 \\
h
\end{array}\right)
$$

are linearly dependent if and only if the vector equation

$$
x\left(\begin{array}{c}
180 \\
50 \\
200
\end{array}\right)+y\left(\begin{array}{l}
100 \\
150 \\
100
\end{array}\right)+z\left(\begin{array}{c}
116 \\
130 \\
h
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

has a nonzero solution. This translates into the matrix

$$
\left(\begin{array}{ccc}
180 & 100 & 116 \\
50 & 150 & 130 \\
200 & 100 & h
\end{array}\right) \xrightarrow[\text { rref }]{\text { rrim }}\left(\begin{array}{ccc}
1 & 0 & .2 \\
0 & 1 & .8 \\
0 & 0 & h-120
\end{array}\right),
$$

which has a free variable if and only if $h=120$.
Suppose now that $h=120$. The parametric form for the solution the above vector equation is

$$
\begin{aligned}
& x=-.2 z \\
& y=-.8 z
\end{aligned}
$$

Taking $z=1$ gives the linear combination

$$
-.2\left(\begin{array}{c}
180 \\
50 \\
200
\end{array}\right)-.8\left(\begin{array}{l}
100 \\
150 \\
100
\end{array}\right)+\left(\begin{array}{l}
116 \\
130 \\
120
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

In terms of colors:

$$
\left(\begin{array}{l}
116 \\
130 \\
120
\end{array}\right)=\frac{1}{5}\left(\begin{array}{c}
180 \\
50 \\
200
\end{array}\right)+\frac{4}{5}\left(\begin{array}{l}
100 \\
150 \\
100
\end{array}\right)=\left(\begin{array}{l}
36 \\
10 \\
40
\end{array}\right)+\left(\begin{array}{c}
80 \\
120 \\
80
\end{array}\right)
$$

3. Find bases for the column space and the null space of

$$
A=\left(\begin{array}{ccccc}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right)
$$

Solution.

The RREF of $(A \mid 0)$ is

$$
\left(\begin{array}{rrrrr|r}
1 & 0 & 5 & -6 & 1 & 0 \\
0 & 1 & -3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

so x_{3}, x_{4}, x_{5} are free, and

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
-5 x_{3}+6 x_{4}-x_{5} \\
3 x_{3}-x_{4} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-5 \\
3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
6 \\
-1 \\
0 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Therefore, a basis for Nul A is $\left\{\left(\begin{array}{c}-5 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}6 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$.
To find a basis for $\operatorname{Col} A$, we use the pivot columns as they were written in the original matrix A, not its RREF. These are the first two columns:

$$
\left\{\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)\right\} .
$$

4. Find a basis for the subspace V of \mathbf{R}^{4} given by

$$
V=\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \text { in } \mathbf{R}^{4} \mid x+2 y-3 z+w=0\right\}
$$

Solution.

V is $\mathrm{Nul} A$ for the 1×4 matrix $A=\left(\begin{array}{llll}1 & 2 & -3 & 1\end{array}\right)$. The augmented matrix $(A \mid 0)=$ $\left(\begin{array}{llll}1 & 2 & -3 & 1 \mid 0\end{array}\right)$ gives $x=-2 y+3 z-w$ where y, z, w are free variables. The parametric vector form for the solution set to $A x=0$ is

$$
\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-2 y+3 z-w \\
y \\
z \\
w
\end{array}\right)=y\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+z\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Therefore, a basis for V is

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

5. a) True or false: If A is an $m \times n$ matrix and $\operatorname{Nul}(A)=\mathbf{R}^{n}$, then $\operatorname{Col}(A)=\{0\}$.
b) Give an example of 2×2 matrix whose column space is the same as its null space.

Solution.

a) If $\operatorname{Nul}(A)=\mathbf{R}^{n}$ then $A x=0$ for all x in \mathbf{R}^{n}, so the only element in $\operatorname{Col}(A)$ is $\{0\}$. Alternatively, the rank theorem says
$\operatorname{dim}(\operatorname{Col} A)+\operatorname{dim}(\operatorname{Nul} A)=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)+n=n \Longrightarrow \operatorname{dim}(\operatorname{Col} A)=0 \Longrightarrow \operatorname{Col} A=\{0\}$.
b) Take $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Its null space and column space are $\operatorname{Span}\left\{\binom{1}{0}\right\}$.
6. For each matrix A, describe what the transformation $T(x)=A x$ does to \mathbf{R}^{3} geometrically.

$$
\text { a) }\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { b) }\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Solution.

a) We compute

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-x \\
y \\
z
\end{array}\right) .
$$

This is the reflection over the $y z$-plane.
b) We compute

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
z
\end{array}\right) .
$$

This is projection onto the z-axis.

