Math 1553 Supplement §4.5, 5.1-5.3

Solutions

1. a) Fill in: A and B are invertible $n \times n$ matrices, then the inverse of $A B$ is \qquad .
b) If the columns of an $n \times n$ matrix Z are linearly independent, is Z necessarily invertible? Justify your answer.
c) If A and B are $n \times n$ matrices and $A B x=0$ has a unique solution, does $A x=0$ necessarily have a unique solution? Justify your answer.

Solution.

a) $(A B)^{-1}=B^{-1} A^{-1}$.
b) Yes. The transformation $x \rightarrow Z x$ is one-to-one since the columns of Z are linearly independent. Thus Z has a pivot in all n columns, so Z has n pivots. Since Z also has n rows, this means that Z has a pivot in every row, so $x \rightarrow Z x$ is onto. Therefore, Z is invertible.

Alternatively, since Z is an $n \times n$ matrix whose columns are linearly independent, the Invertible Matrix Theorem (2.3) in 2.3 says that Z is invertible.
c) Yes. Since $A B$ is an $n \times n$ matrix and $A B x=0$ has a unique solution, the Invertible Matrix Theorem says that $A B$ is invertible. Note A is invertible and its inverse is $B(A B)^{-1}$, since these are square matrices and

$$
A\left(B(A B)^{-1}\right)=A B(A B)^{-1}=I_{n}
$$

Since A is invertible, $A x=0$ has a unique solution by the Invertible Matrix Theorem.
2. Let A be an $n \times n$ matrix.
a) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has adjacent identical columns.

Solution.

a) If A has zeros for all entries in row i (so $a_{i 1}=a_{i 2}=\cdots=a_{i n}=0$), then the cofactor expansion along row i is
$\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}=0 \cdot C_{i 1}+0 \cdot C_{i 2}+\cdots+0 \cdot C_{i n}=0$.
Similarly, if A has zeros for all entries in column j, then the cofactor expansion along column j is the sum of a bunch of zeros and is thus 0 .
b) If A has identical adjacent columns, then the cofactor expansions will be identical except that one expansion's terms for $\operatorname{det}(A)$ will have plus signs where
the other expansion's terms for $\operatorname{det}(A)$ have minus signs (due to the $(-1)^{\text {power }}$ factors) and vice versa.

Therefore, $\operatorname{det}(A)=-\operatorname{det}(A)$, so $\operatorname{det} A=0$.
3. Find the volume of the parallelepiped in \mathbf{R}^{4} naturally determined by the vectors

$$
\left(\begin{array}{l}
4 \\
1 \\
3 \\
8
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
7 \\
0 \\
3
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
5 \\
-5 \\
0 \\
7
\end{array}\right)
$$

Solution.

We put the vectors as columns of a matrix A and find $|\operatorname{det}(A)|$. For this, we expand $\operatorname{det}(A)$ along the third row because it only has one nonzero entry.
$\operatorname{det}(A)=3(-1)^{3+1} \cdot \operatorname{det}\left(\begin{array}{ccc}0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7\end{array}\right)=3 \cdot 5(-1)^{1+3} \operatorname{det}\left(\begin{array}{ll}7 & 2 \\ 3 & 1\end{array}\right)=3(5)(1)(7-6)=15$.
(In the second step, we used the cofactor expansion along the first row since it had only one nonzero entry.)

The volume is $|\operatorname{det}(A)|=|15|=15$.
4. If A is a 3×3 matrix and $\operatorname{det}(A)=1$, what is $\operatorname{det}(-2 A)$?

Solution.

By determinant properties, scaling one row by c multiplies the determinant by c. When we take $c A$ for an $n \times n$ matrix A, we are multiplying each row by c. This multiplies the determinant by c a total of n times.

Thus, if A is $n \times n$, then $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$. Here $n=3$, so

$$
\operatorname{det}(-2 A)=(-2)^{3} \operatorname{det}(A)=-8 \operatorname{det}(A)=-8
$$

5. a) Is there a real 2×2 matrix A that satisfies $A^{4}=-I_{2}$? Either write such an A, or show that no such A exists.
(hint: think geometrically! The matrix $-I_{2}$ represents rotation by π radians).
b) Is there a real 3×3 matrix A that satisfies $A^{4}=-I_{3}$? Either write such an A, or show that no such A exists.

Solution.

a) Yes. Just take A to be the matrix of counterclockwise rotation by $\frac{\pi}{4}$ radians:

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Then A^{2} gives rotation c.c. by $\frac{\pi}{2}$ radians, A^{3} gives rotation c.c. by $\frac{3 \pi}{4}$ radians, and A^{4} gives rotation c.c. by π radians, which has matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=-I_{2}$.
b) No. If $A^{4}=-I$ then

$$
[\operatorname{det}(A)]^{4}=\operatorname{det}\left(A^{4}\right)=\operatorname{det}(-I)=(-1)^{3}=-1
$$

In other words, if $A^{4}=-I$ then $[\operatorname{det}(A)]^{4}=-1$, which is impossible since $\operatorname{det}(A)$ is a real number.

Similarly, $A^{4}=-I$ is impossible if A is $5 \times 5,7 \times 7$, etc.

