Math 1553 Supplement §6.1, 6.2

Supplemental Problems

1. Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are 3×3. There is a unique correspondence. Justify the correspondences in words.
(i) $A x=\left(\begin{array}{l}5 \\ 1 \\ 2\end{array}\right)$ has a unique solution.
(ii) The transformation $T(v)=A v$ fixes a nonzero vector.
(iii) A is obtained from B by subtracting the third row of B from the first row of B.
(iv) The columns of A and B are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of B.
(v) The columns of A, when added, give the zero vector.
(a) 0 is an eigenvalue of A.
(b) A is invertible.
(c) $\operatorname{det}(A)=\operatorname{det}(B)$
(d) $\operatorname{det}(A)=-\operatorname{det}(B)$
(e) 1 is an eigenvalue of A.

Solution.

(i) matches with (b).
(ii) matches with (e).
(iii) matches with (c).
(iv) matches with (d).
(v) matches with (a).
2. Find a basis \mathcal{B} for the (-1)-eigenspace of $Z=\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1\end{array}\right)$

Solution.

For $\lambda=-1$, we find $\operatorname{Nul}(Z-\lambda I)$.

$$
(Z-\lambda I \mid 0)=(Z+I \mid 0)=\left(\begin{array}{lll|l}
3 & 3 & 1 & 0 \\
3 & 3 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Therefore, $x=-y, y=y$, and $z=0$, so

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-y \\
y \\
0
\end{array}\right)=y\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

A basis is $\mathcal{B}=\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$. We can check to ensure $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ is an eigenvector with corresponding eigenvalue -1 :

$$
Z\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
2 & 3 & 1 \\
3 & 2 & 4 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-2+3 \\
-3+2 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=-\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

3. Suppose A is an $n \times n$ matrix satisfying $A^{2}=0$. Find all eigenvalues of A. Justify your answer.

Solution.

If λ is an eigenvalue of A and $v \neq 0$ is a corresponding eigenvector, then

$$
A v=\lambda v \Longrightarrow A(A v)=A \lambda v \Longrightarrow A^{2} v=\lambda(A v) \Longrightarrow 0=\lambda(\lambda v) \Longrightarrow 0=\lambda^{2} v
$$

Since $v \neq 0$ this means $\lambda^{2}=0$, so $\lambda=0$. This shows that 0 is the only possible eigenvalue of A.

On the other hand, $\operatorname{det}(A)=0$ since $(\operatorname{det}(A))^{2}=\operatorname{det}\left(A^{2}\right)=\operatorname{det}(0)=0$, so 0 must be an eigenvalue of A. Therefore, the only eigenvalue of A is 0 .
4. Give an example of matrices A and B which satisfy the following:
(I) A and B have the same eigenvalues, and the same algebraic multiplicities for each eigenvalue.
(II) For some eigenvalue λ, the λ-eigenspace for A has a different dimension than the λ-eigenspace for B.

Justify your answer.

Solution.

Many examples possible. For example, $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
Both A and B have characteristic equation $\lambda^{2}=0$, so each has eigenvalue $\lambda=0$ with algebraic multiplicity two. However, the 0 -eigenspace for A is \mathbf{R}^{2} and thus has dimension 2, while the 0-eigenspace for B has dimension 1 (the line $y=0$ in \mathbf{R}^{2}).
5. Let $A=\left(\begin{array}{ccc}5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2\end{array}\right)$. Find the eigenvalues of A.

Solution.

We find the characteristic polynomial $\operatorname{det}(A-\lambda I)$ any way we like. The computation below uses the cofactor expansion along the second row:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
5-\lambda & -2 & 3 \\
0 & 1-\lambda & 0 \\
6 & 7 & -2-\lambda
\end{array}\right)=(1-\lambda) \operatorname{det}\left(\begin{array}{cc}
5-\lambda & 3 \\
6 & -2-\lambda
\end{array}\right) \\
& =(1-\lambda) \cdot[(5-\lambda)(-2-\lambda)-3 \cdot 6]=(1-\lambda)\left(\lambda^{2}-3 \lambda-28\right) \\
& =-\lambda^{3}+4 \lambda^{2}+25 \lambda-28 \text { or }(1-\lambda)(\lambda-7)(\lambda+4)
\end{aligned}
$$

The characteristic equation is thus $(1-\lambda)(\lambda-7)(\lambda+4)=0$, so the eigenvalues are $\lambda=-4, \quad \lambda=1$, and $\lambda=7$.
6. Using facts about determinants, justify the following fact: if A is an $n \times n$ matrix, then A and A^{T} have the same characteristic polynomial.

Solution.

We will use three facts which apply to all $n \times n$ matrices B, Y, Z :
(1) $\operatorname{det}(B)=\operatorname{det}\left(B^{T}\right)$.
(2) $(Y-Z)^{T}=Y^{T}-Z^{T}$
(3) If λ is any scalar then $(\lambda I)^{T}=\lambda I$ since the identity matrix is completely symmetric about its diagonal.

Using these three facts in order, we find

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}\left(A^{T}-(\lambda I)^{T}\right)=\operatorname{det}\left(A^{T}-\lambda I\right)
$$

