Math 1553 Supplement §6.1, 6.2

Supplemental Problems

1. Match the statements (i)-(v) with the corresponding statements (a)-(e). All matrices are 3×3 . There is a unique correspondence. Justify the correspondences in words.

(i) $Ax = \begin{pmatrix} 5\\1\\2 \end{pmatrix}$ has a unique solution.

(ii) The transformation T(v) = Av fixes a nonzero vector.

(iii) *A* is obtained from *B* by subtracting the third row of *B* from the first row of *B*.(iv) The columns of *A* and *B* are the same; except that the first, second and third columns of A are respectively the first, third, and second columns of *B*.(v) The columns of *A*, when added, give the zero vector.

(a) 0 is an eigenvalue of *A*.
(b) *A* is invertible.
(c) det(*A*) = det(*B*)
(d) det(*A*) = - det(*B*)
(e) 1 is an eigenvalue of *A*.

Solution.

- (i) matches with (b).
 (ii) matches with (e).
 (iii) matches with (c).
 (iv) matches with (d).
 (v) matches with (a).
- **2.** Find a basis \mathcal{B} for the (-1)-eigenspace of $Z = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$

Solution.

For $\lambda = -1$, we find Nul($Z - \lambda I$).

$$\left(Z - \lambda I \mid 0 \right) = \left(Z + I \mid 0 \right) = \begin{pmatrix} 3 & 3 & 1 \mid 0 \\ 3 & 3 & 4 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \xrightarrow{\text{rref}} \left(\begin{array}{ccc} 1 & 1 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \right)$$

Therefore, x = -y, y = y, and z = 0, so

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

A basis is $\mathcal{B} = \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}$. We can check to ensure $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector with corresponding eigenvalue -1:

$$Z\begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1\\3 & 2 & 4\\0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} -2+3\\-3+2\\0 \end{pmatrix} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = -\begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

3. Suppose *A* is an $n \times n$ matrix satisfying $A^2 = 0$. Find all eigenvalues of *A*. Justify your answer.

Solution.

If λ is an eigenvalue of A and $\nu \neq 0$ is a corresponding eigenvector, then

$$Av = \lambda v \implies A(Av) = A\lambda v \implies A^2 v = \lambda(Av) \implies 0 = \lambda(\lambda v) \implies 0 = \lambda^2 v.$$

Since $v \neq 0$ this means $\lambda^2 = 0$, so $\lambda = 0$. This shows that 0 is the only possible eigenvalue of *A*.

On the other hand, det(A) = 0 since $(det(A))^2 = det(A^2) = det(0) = 0$, so 0 must be an eigenvalue of *A*. Therefore, the only eigenvalue of *A* is 0.

4. Give an example of matrices *A* and *B* which satisfy the following:

(I) *A* and *B* have the same eigenvalues, and the same algebraic multiplicities for each eigenvalue.

(II) For some eigenvalue λ , the λ -eigenspace for *A* has a different dimension than the λ -eigenspace for *B*.

Justify your answer.

Solution.

Many examples possible. For example, $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Both *A* and *B* have characteristic equation $\lambda^2 = 0$, so each has eigenvalue $\lambda = 0$ with algebraic multiplicity two. However, the 0-eigenspace for *A* is \mathbf{R}^2 and thus has dimension 2, while the 0-eigenspace for *B* has dimension 1 (the line y = 0 in \mathbf{R}^2).

5. Let
$$A = \begin{pmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{pmatrix}$$
. Find the eigenvalues of A .

Solution.

We find the characteristic polynomial det($A - \lambda I$) any way we like. The computation below uses the cofactor expansion along the second row:

$$det(A - \lambda I) = det \begin{pmatrix} 5 - \lambda & -2 & 3 \\ 0 & 1 - \lambda & 0 \\ 6 & 7 & -2 - \lambda \end{pmatrix} = (1 - \lambda)det \begin{pmatrix} 5 - \lambda & 3 \\ 6 & -2 - \lambda \end{pmatrix}$$
$$= (1 - \lambda) \cdot \left[(5 - \lambda)(-2 - \lambda) - 3 \cdot 6 \right] = (1 - \lambda)(\lambda^2 - 3\lambda - 28)$$
$$= -\lambda^3 + 4\lambda^2 + 25\lambda - 28 \quad \text{or} \quad (1 - \lambda)(\lambda - 7)(\lambda + 4)$$

The characteristic equation is thus $(1-\lambda)(\lambda-7)(\lambda+4) = 0$, so the eigenvalues are $\lambda = -4$, $\lambda = 1$, and $\lambda = 7$.

6. Using facts about determinants, justify the following fact: if A is an $n \times n$ matrix, then A and A^{T} have the same characteristic polynomial.

Solution.

We will use three facts which apply to all $n \times n$ matrices *B*, *Y*, *Z*:

- (1) $det(B) = det(B^T)$. (2) $(Y Z)^T = Y^T Z^T$

(3) If λ is any scalar then $(\lambda I)^T = \lambda I$ since the identity matrix is completely symmetric about its diagonal.

Using these three facts in order, we find

 $\det(A - \lambda I) = \det\left((A - \lambda I)^{T}\right) = \det\left(A^{T} - (\lambda I)^{T}\right) = \det(A^{T} - \lambda I).$