Math 1553 Supplement §6.4, 6.5

For those who want additional practice problems after completing the worksheet, here are some extra practice problems.

1. a) If A is the matrix that implements rotation by 143° in \mathbf{R}^{2}, then A has no real eigenvalues.
b) If A is diagonalizable and invertible, then A^{-1} is diagonalizable.
c) $\mathrm{A} 3 \times 3$ (real) matrix can have eigenvalues 3,5 , and $2+i$.

Solution.

a) True. If A had a real eigenvalue λ, then we would have $A x=\lambda x$ for some vector x in \mathbf{R}^{2}. This means that x would lie on the same line through the origin as the rotation of x by 143°, which is impossible.
b) True. If $A=C D C^{-1}$ and A is invertible then its eigenvalues are all nonzero, so the diagonal entries of D are nonzero and thus D is invertible (pivot in every diagonal position). Thus, $A^{-1}=\left(C D C^{-1}\right)^{-1}=\left(C^{-1}\right)^{-1} D^{-1} C^{-1}=C D^{-1} C^{-1}$.
c) False. If $2+i$ is an eigenvalue then so is its conjugate $2-i$.
2. Let $A=\left(\begin{array}{rrr}8 & 36 & 62 \\ -6 & -34 & -62 \\ 3 & 18 & 33\end{array}\right)$.

The characteristic polynomial for A is $-\lambda^{3}+7 \lambda^{2}-16 \lambda+12$, and $\lambda-3$ is a factor. Decide if A is diagonalizable. If it is, find an invertible matrix C and a diagonal matrix D such that $A=C D C^{-1}$.

Solution.

By polynomial division,

$$
\frac{-\lambda^{3}+7 \lambda^{2}-16 \lambda+12}{\lambda-3}=-\lambda^{2}+4 \lambda-4=-(\lambda-2)^{2} .
$$

Thus, the characteristic poly factors as $-(\lambda-3)(\lambda-2)^{2}$, so the eigenalues are $\lambda_{1}=3$ and $\lambda_{2}=2$.

For $\lambda_{1}=3$, we row-reduce $A-3 I$:

$$
\begin{gathered}
\left(\begin{array}{ccc}
5 & 36 & 62 \\
-6 & -37 & -62 \\
3 & 18 & 30
\end{array}\right) \xrightarrow[\left(N e w R_{1}\right) / 3]{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
-6 & -37 & -62 \\
5 & 36 & 62
\end{array}\right) \xrightarrow[R_{3}=R_{3}-5 R_{1}]{R_{2}=R_{2}+6 R_{1}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
0 & -1 & -2 \\
0 & 6 & 12
\end{array}\right) \\
\underset{\text { then } R_{2}=-R_{2}}{R_{3}=R_{3}+6 R_{2}}\left(\begin{array}{ccc}
1 & 6 & 10 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{1}=R_{1}-6 R_{2}}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Therefore, the solutions to $(A-3 I \mid 0)$ are $x_{1}=2 x_{3}, x_{2}=-2 x_{3}, x_{3}=x_{3}$.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right) . \quad \text { The 3-eigenspace has basis }\left\{\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)\right\} .
$$

For $\lambda_{2}=2$, we row-reduce $A-2 I$:

$$
\left(\begin{array}{ccc}
6 & 36 & 62 \\
-6 & -36 & -62 \\
3 & 18 & 31
\end{array}\right) \quad \text { rref } \quad\left(\begin{array}{ccc}
1 & 6 & \frac{31}{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The solutions to $\left(\begin{array}{ll}A-2 I & 0\end{array}\right)$ are $x_{1}=-6 x_{2}-\frac{31}{3} x_{3}, x_{2}=x_{2}, x_{3}=x_{3}$.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-6 x_{2}-\frac{31}{3} x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-6 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-\frac{31}{3} \\
0 \\
1
\end{array}\right) .
$$

The 2-eigenspace has basis $\left\{\left(\begin{array}{c}-6 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-\frac{31}{3} \\ 0 \\ 1\end{array}\right)\right\}$.
Therefore, $A=C D C^{-1}$ where

$$
C=\left(\begin{array}{ccc}
2 & -6 & -\frac{31}{3} \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad D=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Note that we arranged the eigenvectors in C in order of the eigenvalues $3,2,2$, so we had to put the diagonals of D in the same order.
3. Give examples of 2×2 matrices with the following properties. Justify your answers.
a) A matrix A which is invertible and diagonalizable.
b) A matrix B which is invertible but not diagonalizable.
c) A matrix C which is not invertible but is diagonalizable.
d) A matrix D which is neither invertible nor diagonalizable.

Solution.

a) We can take any diagonal matrix with nonzero diagonal entries:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

b) A shear has only one eigenvalue $\lambda=1$. The associated eigenspace is the x axis, so there do not exist two linearly independent eigenvectors. Hence it is not diagonalizable.

$$
B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

c) We can take any diagonal matrix with some zero diagonal entries:

$$
C=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

d) Such a matrix can only have the eigenvalue zero - otherwise it would have two eigenvalues, hence be diagonalizable. Thus the characteristic polynomial is $f(\lambda)=\lambda^{2}$. Here is a matrix with trace and determinant zero, whose zeroeigenspace (i.e., null space) is not all of \mathbf{R}^{2} :

$$
D=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

4. $\operatorname{Let} A=\left(\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right)$. Find all eigenvalues of A. For each eigenvalue, find an associated eigenvector.

Solution.

The characteristic polynomial is

$$
\begin{gathered}
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-2 \lambda+5 \\
\lambda^{2}-2 \lambda+5=0 \Longleftrightarrow \lambda=\frac{2 \pm \sqrt{4-20}}{2}=\frac{2 \pm 4 i}{2}=1 \pm 2 i .
\end{gathered}
$$

For $\lambda_{1}=1-2 i$, we find an eigenvector. For $A-(1-2 i) I$, the second row must be a multiple of the first since $A-(1-2 i) I$ is a non-invertible 2×2 matrix, so row-reduction will automatically destroy the second row.

$$
(A-(1-2 i) I \mid 0)=\left(\begin{array}{rr|r}
2 i & 2 & 0 \\
-2 & 2 i & 0
\end{array}\right) \xrightarrow[\text { then } R_{1}=R_{1} /(2 i)]{R_{2}=R_{2}-i R_{1}}\left(\begin{array}{rr|r}
1 & -i & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

So $x_{1}=i x_{2}$ and x_{2} is free. An eigenvector is $v_{1}=\binom{i}{1}$.
An eigenvector for $\lambda_{2}=1+i$ is $v_{2}=\overline{v_{1}}=\binom{-i}{1}$.

Alternatively: for the eigenvalue $\lambda=1-2 i$, we can use a trick you may have seen in class: the first row $\left(\begin{array}{ll}a & b\end{array}\right)$ of $A-\lambda I$ will lead to an eigenvector $\binom{-b}{a}$ (or equivalently, $\binom{b}{-a}$ if you prefer).

$$
(A-(1-2 i) I \mid 0)=\left(\begin{array}{rr|r}
2 i & 2 & 0 \\
(*) & (*) & 0
\end{array}\right) \quad \Longrightarrow \quad v=\binom{-2}{2 i} .
$$

Note that this choice of v looks much different than the vector v_{1} above, but they are actually equivalent since they are (complex) scalar multiples of each other, as $v=2 i v_{1}$. From the correspondence between conjugate eigenvalues and their
eigenvectors, we know (without doing any additional work!) that for the eigenvalue $\lambda=1+2 i$, a corresponding eigenvector is $w=\bar{v}=\binom{-2}{-2 i}$.
5. Suppose a 2×2 matrix A has eigenvalue $\lambda_{1}=-2$ with eigenvector $v_{1}=\binom{3 / 2}{1}$, and eigenvalue $\lambda_{2}=-1$ with eigenvector $v_{2}=\binom{1}{-1}$.
a) Find A.
b) Find A^{100}.

Solution.

a) We have $A=C D C^{-1}$ where

$$
C=\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right) .
$$

We compute $C^{-1}=\frac{1}{-5 / 2}\left(\begin{array}{cc}-1 & -1 \\ -1 & 3 / 2\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}2 & 2 \\ 2 & -3\end{array}\right)$.

$$
A=C D C^{-1}=\frac{1}{5}\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right)=\frac{1}{5}\left(\begin{array}{ll}
-8 & -3 \\
-2 & -7
\end{array}\right) .
$$

b)

$$
\begin{aligned}
A^{100} & =C D^{100} C^{-1}=\frac{1}{5}\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right) \cdot D^{100}\left(\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2^{100} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
3 / 2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 \cdot 2^{100} & 2 \cdot 2^{100} \\
2 & -3
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
3 \cdot 2^{100}+2 & 3 \cdot 2^{100}-3 \\
2^{101}-2 & 2^{101}+3
\end{array}\right) .
\end{aligned}
$$

