Math 1553 Supplement, Chapter 7

1. True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.
a) Suppose $W=\operatorname{Span}\{w\}$ for some vector $w \neq 0$, and suppose v is a vector orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.
b) Suppose W is a subspace of \mathbf{R}^{n} and x is a vector in \mathbf{R}^{n}. If x is not in W, then $x-x_{W}$ is not zero.
c) Suppose W is a subspace of \mathbf{R}^{n} and x is in both W and W^{\perp}. Then $x=0$.
d) Suppose \widehat{x} is a least squares solution to $A x=b$. Then \widehat{x} is the closest vector to b in the column space of A.

Solution.

a) True. Since $v \in W^{\perp}$, its projection onto W is zero.
b) True. If x is not in W then $x \neq x_{W}$, so $x-x_{W}$ is not zero.
c) True. Since x is in W and W^{\perp} it is orthogonal to itself, so $\|x\|^{2}=x \cdot x=0$. The length of x is zero, which means every entry of x is zero, hence $x=0$.
d) False: $A \widehat{x}$ is the closest vector to b in $\operatorname{Col} A$.
2. Let $W=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$, where $v_{1}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
a) Find the closest point w in W to $x=\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.

Let $A=\left(\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right)$. We solve $A^{T} A v=A^{T} x$.

$$
A^{T} A=\left(\begin{array}{cc}
6 & 6 \\
6 & 14
\end{array}\right) \quad A^{T}\left(\begin{array}{c}
0 \\
14 \\
-4
\end{array}\right)=\binom{24}{16} .
$$

We find $\left(\begin{array}{rr|r}6 & 6 & 24 \\ 6 & 14 & 16\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{rr|r}1 & 0 & 5 \\ 0 & 1 & -1\end{array}\right)$, so $v=\binom{5}{-1}$ and therefore

$$
w=A v=\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\binom{5}{-1}=\left(\begin{array}{c}
-6 \\
8 \\
2
\end{array}\right) .
$$

b) Find the distance from w to $\left(\begin{array}{c}0 \\ 14 \\ -4\end{array}\right)$.

$$
\|x-w\|=\left\|\left(\begin{array}{c}
0 \\
14 \\
-4
\end{array}\right)-\left(\begin{array}{c}
-6 \\
8 \\
2
\end{array}\right)\right\|=\left\|\left(\begin{array}{c}
6 \\
6 \\
-6
\end{array}\right)\right\|=\sqrt{36+36+36}=\sqrt{108}=6 \sqrt{3}
$$

c) Find the standard matrix for the orthogonal projection onto $\operatorname{Span}\left\{v_{1}\right\}$.

$$
B=\frac{1}{v_{1} \cdot v_{1}} v_{1} v_{1}^{T}=\frac{1}{(-1)^{2}+2^{2}+1^{2}}\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)\left(\begin{array}{lll}
-1 & 2 & 1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{ccc}
1 & -2 & -1 \\
-2 & 4 & 2 \\
-1 & 2 & 1
\end{array}\right)
$$

d) Find the standard matrix for the orthogonal projection onto W.

Let $A=\left(\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right)$. Since the columns of A are linearly independent, our projection matrix is $A\left(A^{T} A\right)^{-1} A^{T}$. We already computed $A^{T} A$ in part (a), so our matrix is

$$
\begin{aligned}
A\left(A^{T} A\right)^{-1} A^{T} & =\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
6 & 6 \\
6 & 14
\end{array}\right)^{-1}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
6 & 6 \\
6 & 14
\end{array}\right)^{-1}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right) \\
& =\frac{1}{48}\left(\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
14 & -6 \\
-6 & 6
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
\end{aligned}
$$

