Math 1553 Supplement, Chapter 7

- **1.** True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.
 - a) Suppose $W = \text{Span}\{w\}$ for some vector $w \neq 0$, and suppose v is a vector orthogonal to w. Then the orthogonal projection of v onto W is the zero vector.
 - **b)** Suppose *W* is a subspace of \mathbb{R}^n and *x* is a vector in \mathbb{R}^n . If *x* is not in *W*, then $x x_W$ is not zero.
 - c) Suppose W is a subspace of \mathbf{R}^n and x is in both W and W^{\perp} . Then x = 0.
 - **d)** Suppose \hat{x} is a least squares solution to Ax = b. Then \hat{x} is the closest vector to *b* in the column space of *A*.

2. Let
$$W = \text{Span}\{v_1, v_2\}$$
, where $v_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
a) Find the closest point w in W to $x = \begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix}$.
b) Find the distance from w to $\begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix}$.

- c) Find the standard matrix for the orthogonal projection onto $\text{Span}\{v_1\}$.
- **d)** Find the standard matrix for the orthogonal projection onto *W*.