MATH 1553, FALL 2018
 SAMPLE MIDTERM 1: THROUGH SECTION 3.4

| Name |
| :--- | :--- |

Please read all instructions carefully before beginning.

- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.
a) Compute: $\left(\begin{array}{cc}3 & 2 \\ -2 & 0 \\ 1 & 4\end{array}\right)\binom{1}{-3}=$

The remaining problems are True or false. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to justify your answer.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ The matrix $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$ is in reduced row echelon form.
c) $\mathbf{T} \quad$ If $A x=b$ is consistent, then the equation $A x=5 b$ is consistent.
d) $\mathbf{T} \quad \mathbf{F}$ If the augmented matrix corresponding to a linear system of equations has a pivot in every row, then the system is consistent.
e) $\quad \mathbf{T} \quad$ If A is an $m \times n$ matrix and $A x=0$ has a unique solution, then $A x=b$ is consistent for every b in \mathbf{R}^{m}.
f) $\mathbf{T} \quad \mathbf{F} \quad$ The three vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right) \operatorname{span} \mathbf{R}^{3}$.

Solution.

a) $1\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)-3\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)=\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)+\left(\begin{array}{c}-6 \\ 0 \\ -12\end{array}\right)=\left(\begin{array}{c}-3 \\ -2 \\ -11\end{array}\right)$.
b) True.
c) True. If $A w=b$ then $A(5 w)=5 A w=5 b$.
d) False. For example, $\left(\begin{array}{rr|r}\boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1}\end{array}\right)$ has a pivot in every row but is inconsistent.
e) False. For example, if $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$, then $A x=0$ has only the trivial solution, but $A x=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ has no solution.
f) True. The three vectors form a 3×3 matrix with a pivot in every row.

Problem 2.

Parts (a) and (b) are 2 points each. Parts (c) and (d) are 3 points each.
a) If A is a 2×3 matrix with 2 pivots, then the set of solutions to $A x=0$ is a:
(circle one answer) point line plane 3-plane
(circle one answer) $\quad \mathbf{R} \quad \mathbf{R}^{2} \quad \mathbf{R}^{3}$.
b) Write a vector equation which represents an inconsistent system of two linear equations in x_{1} and x_{2}.
c) For some 2×2 matrix A and vector b in \mathbf{R}^{2}, the solution set of $A x=b$ is drawn below. Draw the solution set of $A x=0$.

d) If b, v, w are vectors in \mathbf{R}^{3} and $\operatorname{Span}\{b, v, w\}=\mathbf{R}^{3}$, is it possible that b is in Span $\{v, w\}$? Justify your answer.

Solution.

a) Line in \mathbf{R}^{3}. Since there are 2 pivots but 3 columns, one column will not have a pivot, so $A x=0$ will have exactly one free variable. The number of entries in x must match the number of columns of A (namely, 3), so each solution x is in \mathbf{R}^{3}.
b) The system $\left(\begin{array}{ll|l}1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ is inconsistent; its corresponding vector equation is

$$
x_{1}\binom{1}{1}+x_{2}\binom{1}{1}=\binom{0}{1} .
$$

c) The solution set of $A x=0$ is the parallel line through the origin.
d) No. Recall that $\operatorname{Span}\{b, v, w\}$ is the set of all linear combinations of b, v, and w. If b is in $\operatorname{Span}\{v, w\}$ then b is a linear combination of v and w. Consequently, any element of $\operatorname{Span}\{b, v, w\}$ is a linear combination of v and w and is therefore in $\operatorname{Span}\{v, w\}$,
which is at most a plane and cannot be all of \mathbf{R}^{3}.
To see why the span of v and w can never be \mathbf{R}^{3}, consider the matrix A whose columns are v and w. Since A is 3×2, it has at most two pivots, so A cannot have a pivot in every row. Therefore, by a theorem from section 1.4, the equation $A x=b$ will fail to be consistent for some b in \mathbf{R}^{3}, which means that some b in \mathbf{R}^{3} is not in the span of v and w.

Johnny Rico believes that the secret to the universe can be found in the system of two linear equations in x and y given by

$$
\begin{array}{r}
x-y=h \\
3 x+h y=4
\end{array}
$$

where h is a real number.
a) Find all values of h (if any) which make the system inconsistent. Briefly justify your answer.
b) Find all values of h (if any) which make the system have a unique solution. Briefly justify your answer.

Solution.

Represent the system with an augmented matrix and row-reduce:

$$
\left(\begin{array}{rr|r}
1 & -1 & h \\
3 & h & 4
\end{array}\right) \xrightarrow{R_{2}-3 R_{1}}\left(\begin{array}{rr|r}
1 & -1 & h \\
0 & h+3 & 4-3 h
\end{array}\right)
$$

a) If $h=-3$ then the matrix is $\left(\begin{array}{rr|r}1 & -1 & -3 \\ 0 & 0 & 13\end{array}\right)$, which has a pivot in the rightmost column and is therefore inconsistent.
b) If $h \neq-3$, then the matrix has a pivot in each row to the left of the augment: $\left(\begin{array}{rr|r}\boxed{1} & -1 & h \\ 0 & \boxed{h+3} & 4-3 h\end{array}\right)$. The right column is not a pivot column, so the system is consistent. The left side has a pivot in each column, so the solution is unique.
a) Find the parametric form of the general solution of the following system of equations. Clearly indicate which variables (if any) are free variables.

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3}-x_{4} & =4 \\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4} & =-1 \\
-x_{1}-2 x_{2}-x_{3}+x_{4} & =-1
\end{aligned}
$$

b) Write the set of solutions to

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3}-x_{4} & =0 \\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4} & =0 \\
-x_{1}-2 x_{2}-x_{3}+x_{4} & =0
\end{aligned}
$$

in parametric vector form.

Solution.

a) We put the appropriate augmented matrix into RREF.

$$
\begin{gathered}
\left(\begin{array}{rrrr|r}
1 & 2 & 2 & -1 & 4 \\
2 & 4 & 1 & -2 & -1 \\
-1 & -2 & -1 & 1 & -1
\end{array}\right) \xrightarrow[R_{3}=R_{3}+R_{1}]{R_{2}=R_{2}-2 R_{1}}\left(\begin{array}{rrrr|r}
1 & 2 & 2 & -1 & 4 \\
0 & 0 & -3 & 0 & -9 \\
0 & 0 & 1 & 0 & 3
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{rrrr|r}
1 & 2 & 2 & -1 & 4 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & -3 & 0 & -9
\end{array}\right) \\
\xrightarrow[R_{1}=R_{1}-2 R_{2}]{R_{3}=R_{3}+3 R_{2}}\left(\begin{array}{rrrr|r}
1 & 2 & 0 & -1 & -2 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Therefore, x_{2} and x_{4} are free, and we have:

$$
\begin{array}{|lrl|}
\hline x_{1}= & -2-2 x_{2}+x_{4} \\
x_{2} & x_{2} & \\
x_{3}= & 3 \\
x_{4}= & x_{4} . \\
\hline
\end{array}
$$

In parametric form, this is:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2-2 x_{2}+x_{4} \\
3 \\
x_{2} \\
3
\end{array}\right)=\left(\begin{array}{c}
-2 \\
0 \\
3 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) .
$$

b) The equation in (b) is just the corresponding homogeneous equation, which is a translate of the above plane which includes the origin.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad\left(x_{2}, x_{4} \text { real }\right)
$$

Problem 5.

The diagram below represents traffic in a city.

a) Write a system of three linear equations whose solution would give the values of x_{1}, x_{2}, and x_{3}. Do not solve it.
b) Write the system of equations as a vector equation. Do not solve it.

Solution.

a) The number of cars leaving an intersection must equal the number of cars entering.

$$
\begin{gathered}
x_{3}+70=x_{1}+90 \\
x_{1}+x_{2}=160 \\
x_{2}+x_{3}=180 .
\end{gathered}
$$

Or:

$$
\begin{aligned}
-x_{1}+x_{3} & =20 \\
x_{1}+x_{2} & =160 \\
x_{2}+x_{3} & =180 .
\end{aligned}
$$

b) $x_{1}\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)+x_{2}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)+x_{3}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}20 \\ 160 \\ 180\end{array}\right)$.
[Scratch work]

