MATH 1553, FALL 2018
SAMPLE MIDTERM 1: THROUGH SECTION 3.4

Please read all instructions carefully before beginning.

• You have 50 minutes to complete this exam.
• There are no aids of any kind (calculators, notes, text, etc.) allowed.
• Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
• You may cite any theorem proved in class or in the sections we covered in the text.
• Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.
Problem 1. [Parts a) through f) are worth 2 points each]

a) Compute: \[
\begin{pmatrix}
3 & 2 \\
-2 & 0 \\
1 & 4 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
-3 \\
\end{pmatrix} =
\]

The remaining problems are True or false. Circle T if the statement is always true, and circle F otherwise. You do not need to justify your answer.

b) T F The matrix \[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
\end{pmatrix}
\] is in reduced row echelon form.

c) T F If \(Ax = b\) is consistent, then the equation \(Ax = 5b\) is consistent.

d) T F If the augmented matrix corresponding to a linear system of equations has a pivot in every row, then the system is consistent.

e) T F If \(A\) is an \(m \times n\) matrix and \(Ax = 0\) has a unique solution, then \(Ax = b\) is consistent for every \(b\) in \(\mathbb{R}^m\).

f) T F The three vectors \[
\begin{pmatrix}
1 \\
0 \\
0 \\
\end{pmatrix}, \begin{pmatrix}
1 \\
1 \\
0 \\
\end{pmatrix}, \begin{pmatrix}
-1 \\
0 \\
1 \\
\end{pmatrix}
\] span \(\mathbb{R}^3\).
Problem 2.

Parts (a) and (b) are 2 points each. Parts (c) and (d) are 3 points each.

a) If A is a 2×3 matrix with 2 pivots, then the set of solutions to $Ax = 0$ is a:

(circle one answer) point line plane 3-plane

in:

(circle one answer) \mathbb{R} \mathbb{R}^2 \mathbb{R}^3.

b) Write a vector equation which represents an inconsistent system of two linear equations in x_1 and x_2.

c) For some 2×2 matrix A and vector b in \mathbb{R}^2, the solution set of $Ax = b$ is drawn below. Draw the solution set of $Ax = 0$.

\begin{center}
\begin{tikzpicture}
\draw[help lines] (-4,0) grid (4,4);
\draw[->] (-4.5,0) -- (4.5,0) node[right] {x};
\draw[->] (0,-2) -- (0,4.5) node[above] {y};
\draw (0,0) -- (3,3) node[below right] {$Ax = b$};
\end{tikzpicture}
\end{center}

d) If b, v, w are vectors in \mathbb{R}^3 and $\text{Span}\{b, v, w\} = \mathbb{R}^3$, is it possible that b is in $\text{Span}\{v, w\}$? Justify your answer.
Problem 3. [10 points]

Johnny Rico believes that the secret to the universe can be found in the system of two linear equations in \(x \) and \(y \) given by

\[
\begin{align*}
 x - y &= h \\
 3x + hy &= 4
\end{align*}
\]

where \(h \) is a real number.

a) Find all values of \(h \) (if any) which make the system inconsistent. Briefly justify your answer.

b) Find all values of \(h \) (if any) which make the system have a unique solution. Briefly justify your answer.
Problem 4.

[11 points]

a) Find the parametric form of the general solution of the following system of equations. Clearly indicate which variables (if any) are free variables.

\[
\begin{align*}
 x_1 + 2x_2 + 2x_3 - x_4 &= 4 \\
 2x_1 + 4x_2 + x_3 - 2x_4 &= -1 \\
 -x_1 - 2x_2 - x_3 + x_4 &= -1
\end{align*}
\]

b) Write the set of solutions to

\[
\begin{align*}
 x_1 + 2x_2 + 2x_3 - x_4 &= 0 \\
 2x_1 + 4x_2 + x_3 - 2x_4 &= 0 \\
 -x_1 - 2x_2 - x_3 + x_4 &= 0
\end{align*}
\]

in parametric vector form.
The diagram below represents traffic in a city.

\[\begin{align*}
\text{Traffic flow (cars/hr)} \\
70 & \quad 90 \\
& \quad x_1 \\
& \quad x_3 \\
120 & \quad x_2 \\
60 & \quad 50 \\
& \quad 110
\end{align*} \]

a) Write a system of three linear equations whose solution would give the values of \(x_1 \), \(x_2 \), and \(x_3 \). Do not solve it.

b) Write the system of equations as a vector equation. Do not solve it.
[Scratch work]