Math 1553, Extra Practice for Midterm 2 (sections 3.5-4.4)

Solutions

1. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to explain your answer.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace V of \mathbf{R}^{n}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.
b) $\quad \mathbf{F} \quad$ If A is an $n \times n$ matrix and $A e_{1}=A e_{2}$, then the homogeneous equation $A x=0$ has infinitely many solutions.
c) $\quad \mathbf{F} \quad$ The solution set of a consistent matrix equation $A x=b$ is a subspace.
d) $\mathbf{T} \quad \mathbf{F} \quad$ There exists a 3×5 matrix with rank 4 .
e) $\mathbf{T} \quad \mathbf{F}$ If A is an 9×4 matrix with a pivot in each column, then

$$
\operatorname{Nul} A=\{0\} .
$$

f) $\quad \mathbf{F} \quad$ If A is a matrix with more rows than columns, then the transformation $T(x)=A x$ is not one-to-one.
g) $\quad \mathbf{T} \quad \mathbf{F} \quad$ A translate of a span is a subspace.
h) $\quad \mathbf{T} \quad$ There exists a 4×7 matrix A such that nullity $A=5$.
i) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{4}, then $n=4$.

Solution.

a) True: if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is automatically linearly dependent, which is impossible since $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace.
b) True: $x \rightarrow A x$ is not one-to-one, so $A x=0$ has infinitely many solutions. For example, $e_{1}-e_{2}$ is a non-trivial solution to $A x=0$ since $A\left(e_{1}-e_{2}\right)=A e_{1}-A e_{2}=$ 0.
c) False: this is true if and only if $b=0$, i.e., the equation is homogeneous, in which case the solution set is the null space of A.
d) False: the rank is the dimension of the column space, which is a subspace of \mathbf{R}^{3}, hence has dimension at most 3 .
e) True.
f) False. For instance,

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

g) False. A subspace must contain 0 .
h) True. For instance,

$$
A=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

i) True. Any basis of \mathbf{R}^{4} has 4 vectors.
2. Short answer questions: you need not explain your answers.
a) Write a nonzero vector in $\operatorname{Col} A$, where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$.

Solution.

Either column will work. For instance, $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
b) Complete the following definition:

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{\mathrm{m}}$ is one-to-one if...
\ldots for every b in \mathbf{R}^{m}, the equation $T(x)=b$ has at most one solution.
c) Which of the following are onto transformations? (Check all that apply.)
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, reflection over the $x y$-plane
$\square T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, projection onto the $x y$-plane
$\triangle T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$, project onto the $x y$-plane, forget the z-coordinate
$T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, scale the x-direction by 2
d) Let A be a square matrix and let $T(x)=A x$. Which of the following guarantee that T is onto? (Check all that apply.)
$\triangle T$ is one-to-one
$\square A x=0$ is consistent
$\square \operatorname{Col} A=\mathbf{R}^{n}$
\square There is a transformation U such that $T \circ U(x)=x$ for all x
3. Parts (a) and (b) are unrelated.
a) Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
T(x, y, z)=(x, x+z, 3 x-4 y+z, x)
$$

Is T one-to-one? Justify your answer.
b) Find all real numbers h so that the transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by

$$
T(v)=\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
h & 0 & 3
\end{array}\right) v
$$

is onto.

Solution.

a) One approach: We form the standard matrix A for T :

$$
A=\left(T\left(e_{1}\right) \quad T\left(e_{2}\right) \quad T\left(e_{3}\right)\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

We row-reduce A until we determine its pivot columns

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
3 & -4 & 1 \\
1 & 0 & 0
\end{array}\right) \xrightarrow[R_{3}=R_{3}-3 R_{1}, R_{4}=R_{4}-R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -4 & 1 \\
0 & 0 & 0
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

A has a pivot in every column, so T is one-to-one.
Alternative approach: T is a linear transformation, so it is one-to-one if and only if the equation $T(x, y, z)=(0,0,0)$ has only the trivial solution.
If $T(x, y, z)=(x, x+z, 3 x-4 y+z, x)=(0,0,0,0)$ then $x=0$, and

$$
x+z=0 \Longrightarrow 0+z=0 \Longrightarrow z=0, \text { and finally }
$$

$$
3 x-4 y+z=0 \Longrightarrow 0-4 y+0=0 \Longrightarrow y=0
$$

so the trivial solution $x=y=z=0$ is the only solution the homogeneous equation. Therefore, T is one-to-one.
b) We row-reduce A to find when it will have a pivot in every row:

$$
\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
h & 0 & 3
\end{array}\right) \xrightarrow{R_{2}=R_{2}+h R_{1}}\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
0 & 0 & 3+h(2-h)
\end{array}\right) .
$$

The matrix has a pivot in every row unless

$$
3+h(2-h)=0, \quad h^{2}-2 h-3=0, \quad(h-3)(h+1)=0 .
$$

Therefore, T is onto as long as $h \neq 3$ and $h \neq-1$.
4. a) Determine which of the following transformations are linear.
(1) $S: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $S\left(x_{1}, x_{2}\right)=\left(x_{1}, 3+x_{2}\right)$
(2) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1} x_{2}\right)$
(3) $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ given by $U\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}, 0\right)$
b) Complete the following definition (be mathematically precise!): A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly independent if...
c) If $\left\{v_{1}, v_{2}, v_{3}\right\}$ are vectors in \mathbf{R}^{3} with the property that none of the vectors is a scalar multiple of another, is $\left\{v_{1}, v_{2}, v_{3}\right\}$ necessarily linearly independent? Justify your answer.

Solution.

a) (1) S is not linear: $S((1,0)+(1,0))=(2,3)$ but $S(1,0)+S(1,0)=(2,6)$.
(2) T is not linear: $T(1,1)+T(1,1)=(0,2)$, but $T(2(1,1))=T(2,2)=$ $(0,4)$.
(3) U is linear.
b) the vector equation $x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0$ has only the trivial solution $x_{1}=x_{2}=\cdots=x_{p}=0$.
c) No. For example, take $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.

No vector in the set is a scalar multiple of any other, but nonetheless $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent. In fact, $v_{3}=v_{1}+v_{2}$.
5. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be the linear transformation which projects onto the $y z$-plane and then forgets the x-coordinate, and let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation of rotation counterclockwise by 60°. Their standard matrices are

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad B=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)
$$

respectively.
a) Which composition makes sense? (Circle one.)

$$
U \circ T \quad T \circ U
$$

b) Find the standard matrix for the transformation that you circled in (b).

Solution.

a) Only $U \circ T$ makes sense, as the codomain of T is \mathbf{R}^{2}, which is the domain of U.
b) The standard matrix for $U \circ T$ is

$$
B A=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
0 & 1 & -\sqrt{3} \\
0 & \sqrt{3} & 1
\end{array}\right) .
$$

6. Consider the following matrix A and its reduced row echelon form:

$$
\left(\begin{array}{cccc}
2 & 4 & 7 & -16 \\
3 & 6 & -1 & -1 \\
5 & 10 & 6 & -17
\end{array}\right) \text { man }\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

a) Find a basis for $\operatorname{Col} A$.
b) Find a basis \mathcal{B} for $\operatorname{Nul} A$.
c) For each of the following vectors v, decide if v is in $\operatorname{Nul} A$, and if so, write x as a linear combination of your basis from part (b).

$$
\left(\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
-1
\end{array}\right)
$$

Solution.

a) The pivot columns for A form a basis for $\operatorname{Col} A$, so a basis is $\left\{\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right),\left(\begin{array}{c}7 \\ -1 \\ 6\end{array}\right)\right\}$.
b) We compute the parametric vector form for the general solution of $A x=0$:

$$
\begin{array}{lll}
x_{1}= & -2 x_{2}+ & x_{4} \\
x_{2}= & x_{2} & \\
x_{3}= & 2 x_{4} \\
x_{4}= & x_{4}
\end{array} \quad \text { man }\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) .
$$

Therefore, a basis is given by

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right)\right\}
$$

c) First we note that if

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=c_{1}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right),
$$

then $c_{1}=b$ and $c_{2}=d$. This makes it easy to check whether a vector is in Nul A.

$$
\left(\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right) \neq 3\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+2\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \Longrightarrow \text { not in NulA. }\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
-1
\end{array}\right)=2\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right)
$$

7. Consider $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ defined by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+2 y \\
2 x+y \\
x-y
\end{array}\right)
$$

and $U: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by first projecting onto the $x y$-plane (forgetting the z coordinate), then rotating counterclockwise by 90°.
a) Compute the standard matrices A and B for T and U, respectively.
b) Compute the standard matrices for $T \circ U$ and $U \circ T$.
c) Circle all that apply:

| $T \circ U$ is: one-to-one onto | |
| :--- | :--- | :--- |
| $U \circ T$ is: | one-to-one onto |

Solution.

a) We plug in the unit coordinate vectors to get

$$
A=\left(\begin{array}{cc}
\mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
U\left(e_{1}\right) & U\left(e_{2}\right) & U\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

b) The standard matrix for $T \circ U$ is

$$
A B=\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & -2 & 0 \\
-1 & -1 & 0
\end{array}\right)
$$

The standard matrix for $U \circ T$ is

$$
B A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
2 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -1 \\
1 & 2
\end{array}\right) .
$$

c) Looking at the matrices, we see that $T \circ U$ is not one-to-one or onto, and that $U \circ T$ is one-to-one and onto.
8. a) Write a 2×2 matrix A with rank 2 , and draw pictures of $\operatorname{Nul} A$ and $\operatorname{Col} A$.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \operatorname{Nul} A=\begin{array}{|l|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{array}
$$

$$
\operatorname{Col} A=
$$

b) Write a 2×2 matrix B with rank 1 , and draw pictures of $\operatorname{Nul} B$ and $\operatorname{Col} B$.
$A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
$\operatorname{Nul} B=$

$\operatorname{Col} B=$

c) Write a 2×2 matrix C with rank 0 , and draw pictures of $\operatorname{Nul} C$ and $\operatorname{Col} C$.

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \mathrm{Nul} C=\begin{array}{ll|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & \\
\hline
\end{array} \quad . \quad \operatorname{Col} C=\begin{array}{ll}
\hline & \\
\square & \\
\hline
\end{array}
$$

(In the grids, the dot is the origin.)

