Math 1553, Extra Practice for Midterm 2 (sections 3.5-4.4)

1. Circle \mathbf{T} if the statement is always true, and circle \mathbf{F} otherwise. You do not need to explain your answer.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a subspace V of \mathbf{R}^{n}, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is an $n \times n$ matrix and $A e_{1}=A e_{2}$, then the homogeneous equation $A x=0$ has infinitely many solutions.
c) $\mathbf{T} \quad \mathbf{F} \quad$ The solution set of a consistent matrix equation $A x=b$ is a subspace.
d) $\mathbf{T} \quad \mathbf{F} \quad$ There exists a 3×5 matrix with rank 4 .
e) $\mathbf{T} \quad \mathbf{F}$ If A is an 9×4 matrix with a pivot in each column, then

$$
\operatorname{Nul} A=\{0\} .
$$

f) $\quad \mathbf{F} \quad$ If A is a matrix with more rows than columns, then the transformation $T(x)=A x$ is not one-to-one.
g) $\quad \mathbf{T} \quad \mathbf{F} \quad$ A translate of a span is a subspace.
h) $\quad \mathbf{T} \quad$ There exists a 4×7 matrix A such that nullity $A=5$.
i) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for \mathbf{R}^{4}, then $n=4$.
2. Short answer questions: you need not explain your answers.
a) Write a nonzero vector in $\operatorname{Col} A$, where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$.
b) Complete the following definition:

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{\mathrm{m}}$ is one-to-one if...
c) Which of the following are onto transformations? (Check all that apply.)
\square $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, reflection over the $x y$-plane
\square $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, projection onto the $x y$-plane
\square $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$, project onto the $x y$-plane, forget the z-coordinate
\square $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, scale the x-direction by 2
d) Let A be a square matrix and let $T(x)=A x$. Which of the following guarantee that T is onto? (Check all that apply.)

$\square A x=0$ is consistent
$\square \operatorname{Col} A=\mathbf{R}^{n}$
\square There is a transformation U such that $T \circ U(x)=x$ for all x
3. Parts (a) and (b) are unrelated.
a) Consider $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
T(x, y, z)=(x, x+z, 3 x-4 y+z, x)
$$

Is T one-to-one? Justify your answer.
b) Find all real numbers h so that the transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by

$$
T(v)=\left(\begin{array}{ccc}
-1 & 0 & 2-h \\
h & 0 & 3
\end{array}\right) v
$$

is onto.
4. a) Determine which of the following transformations are linear.
(1) $S: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $S\left(x_{1}, x_{2}\right)=\left(x_{1}, 3+x_{2}\right)$
(2) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1} x_{2}\right)$
(3) $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ given by $U\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}, 0\right)$
b) Complete the following definition (be mathematically precise!): A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly independent if...
c) If $\left\{v_{1}, v_{2}, v_{3}\right\}$ are vectors in \mathbf{R}^{3} with the property that none of the vectors is a scalar multiple of another, is $\left\{v_{1}, v_{2}, v_{3}\right\}$ necessarily linearly independent? Justify your answer.
5. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be the linear transformation which projects onto the $y z$-plane and then forgets the x-coordinate, and let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation of rotation counterclockwise by 60°. Their standard matrices are

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad B=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)
$$

respectively.
a) Which composition makes sense? (Circle one.)

$$
U \circ T \quad T \circ U
$$

b) Find the standard matrix for the transformation that you circled in (b).
6. Consider the following matrix A and its reduced row echelon form:

$$
\left(\begin{array}{cccc}
2 & 4 & 7 & -16 \\
3 & 6 & -1 & -1 \\
5 & 10 & 6 & -17
\end{array}\right) \text { man }\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

a) Find a basis for $\operatorname{Col} A$.
b) Find a basis \mathcal{B} for $\operatorname{Nul} A$.
c) For each of the following vectors v, decide if v is in $\operatorname{Nul} A$, and if so, write x as a linear combination of your basis from part (b).

$$
\left(\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
-1
\end{array}\right)
$$

7. Consider $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ defined by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+2 y \\
2 x+y \\
x-y
\end{array}\right)
$$

and $U: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by first projecting onto the $x y$-plane (forgetting the z coordinate), then rotating counterclockwise by 90°.
a) Compute the standard matrices A and B for T and U, respectively.
b) Compute the standard matrices for $T \circ U$ and $U \circ T$.
c) Circle all that apply:
$T \circ U$ is: one-to-one onto
$U \circ T$ is: one-to-one onto
8. a) Write a 2×2 matrix A with rank 2 , and draw pictures of $\operatorname{Nul} A$ and $\operatorname{Col} A$.
$A=$

$\operatorname{Col} A=$

b) Write a 2×2 matrix B with rank 1 , and draw pictures of $\operatorname{Nul} B$ and $\operatorname{Col} B$.

$$
B=\left(\begin{array}{l}
\text { Nul } B= \\
\hline
\end{array} \begin{array}{|l|l|l|l|l|}
\hline & & & & \\
\hline
\end{array}\right.
$$

$\operatorname{Col} B=$

c) Write a 2×2 matrix C with rank 0 , and draw pictures of $\mathrm{Nul} C$ and $\mathrm{Col} C$.

$$
C=(\quad) \quad \mathrm{Nul} C=
$$

$\operatorname{Col} C=$

(In the grids, the dot is the origin.)

