Math 1553, Extra Practice for Midterm 2 (sections 3.5-4.4)

1. Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer. Т If $\{v_1, v_2, v_3, v_4\}$ is a basis for a subspace *V* of \mathbb{R}^n , then $\{v_1, v_2, v_3\}$ a) F is a linearly independent set. Т F b) If A is an $n \times n$ matrix and $Ae_1 = Ae_2$, then the homogeneous equation Ax = 0 has infinitely many solutions. Т F c) The solution set of a consistent matrix equation Ax = b is a subspace. Т F d) There exists a 3×5 matrix with rank 4. Т F e) If *A* is an 9×4 matrix with a pivot in each column, then $NulA = \{0\}.$ Т F f) If A is a matrix with more rows than columns, then the transformation T(x) = Ax is not one-to-one. Т F A translate of a span is a subspace. g) Т F There exists a 4×7 matrix *A* such that nullity A = 5. h) If $\{v_1, v_2, \dots, v_n\}$ is a basis for \mathbb{R}^4 , then n = 4. i) Т F

- **2.** Short answer questions: you need not explain your answers.
 - **a)** Write a nonzero vector in Col*A*, where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$.
 - **b)** Complete the following definition:

A transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ is one-to-one if...

- c) Which of the following are onto transformations? (Check all that apply.)
 - $T: \mathbf{R}^3 \to \mathbf{R}^3$, reflection over the *xy*-plane
 - $T: \mathbf{R}^3 \to \mathbf{R}^3$, projection onto the *xy*-plane
 - $T: \mathbf{R}^3 \to \mathbf{R}^2$, project onto the *xy*-plane, forget the *z*-coordinate
 - $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$, scale the *x*-direction by 2
- **d)** Let *A* be a square matrix and let T(x) = Ax. Which of the following guarantee that *T* is onto? (Check all that apply.)

Ax = 0 is consistent

$$\operatorname{Col} A = \mathbf{R}^n$$

There is a transformation *U* such that $T \circ U(x) = x$ for all *x*

- **3.** Parts (a) and (b) are unrelated.
 - **a)** Consider $T : \mathbf{R}^3 \to \mathbf{R}^3$ given by

$$T(x, y, z) = (x, x + z, 3x - 4y + z, x).$$

Is T one-to-one? Justify your answer.

b) Find all real numbers *h* so that the transformation $T : \mathbf{R}^3 \to \mathbf{R}^2$ given by

$$T(v) = \begin{pmatrix} -1 & 0 & 2-h \\ h & 0 & 3 \end{pmatrix} v$$

is onto.

- **4. a)** Determine which of the following transformations are linear.
 - (1) $S: \mathbf{R}^2 \to \mathbf{R}^2$ given by $S(x_1, x_2) = (x_1, 3 + x_2)$
 - (2) $T : \mathbf{R}^2 \to \mathbf{R}^2$ given by $T(x_1, x_2) = (x_1 x_2, x_1 x_2)$
 - (3) $U: \mathbb{R}^2 \to \mathbb{R}^3$ given by $U(x_1, x_2) = (-x_2, x_1, 0)$
 - **b)** Complete the following definition (be mathematically precise!): A set of vectors $\{v_1, v_2, ..., v_p\}$ in \mathbb{R}^n is *linearly independent* if...
 - c) If $\{v_1, v_2, v_3\}$ are vectors in \mathbb{R}^3 with the property that none of the vectors is a scalar multiple of another, is $\{v_1, v_2, v_3\}$ necessarily linearly independent? Justify your answer.
- **5.** Let $T : \mathbf{R}^3 \to \mathbf{R}^2$ be the linear transformation which projects onto the *yz*-plane and then forgets the *x*-coordinate, and let $U : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation of rotation counterclockwise by 60°. Their standard matrices are

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$,

respectively.

a) Which composition makes sense? (Circle one.)

$$U \circ T$$
 $T \circ U$

- b) Find the standard matrix for the transformation that you circled in (b).
- **6.** Consider the following matrix *A* and its reduced row echelon form:

(2	4	7	-16		(1)	2	0	-1)	
3	6	-1	-1	\longrightarrow	0	0	1	-2	
5	10	6	—17 J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0/	0	0	o /	

- **a)** Find a basis for Col*A*.
- **b)** Find a basis \mathcal{B} for NulA.
- c) For each of the following vectors *v*, decide if *v* is in Nul*A*, and if so, write *x* as a linear combination of your basis from part (b).

$$\begin{pmatrix} 7\\3\\1\\2 \end{pmatrix} \qquad \begin{pmatrix} -5\\2\\-2\\-2\\-1 \end{pmatrix}$$

7. Consider $T : \mathbf{R}^2 \to \mathbf{R}^3$ defined by

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x+2y\\ 2x+y\\ x-y \end{pmatrix}$$

and $U: \mathbb{R}^3 \to \mathbb{R}^2$ defined by first projecting onto the *xy*-plane (forgetting the *z*-coordinate), then rotating counterclockwise by 90°.

- a) Compute the standard matrices A and B for T and U, respectively.
- **b)** Compute the standard matrices for $T \circ U$ and $U \circ T$.
- **c)** Circle all that apply:
 - $T \circ U$ is: one-to-one onto
 - $U \circ T$ is: one-to-one onto
- **8.** a) Write a 2 × 2 matrix *A* with rank 2, and draw pictures of Nul*A* and Col*A*.

b) Write a 2×2 matrix *B* with **rank** 1, and draw pictures of Nul*B* and Col*B*.

c) Write a 2×2 matrix *C* with rank 0, and draw pictures of Nul *C* and Col *C*.

(In the grids, the dot is the origin.)