MATH 1553, FALL 2018
 SAMPLE MIDTERM 2: 3.5 THROUGH 4.4

Name	GT Email	@gatech.edu

Write your section number here: \qquad

Please read all instructions carefully before beginning.

- The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless instructed otherwise. A correct answer without appropriate work will receive little or no credit. If you cannot fit your work on the front side of the page, use the back side of the page as indicated.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is not meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

The exam is not designed to test material from the previous midterm on its own. However, knowledge of the material prior to section $\S 3.5$ is necessary for everything we do for the rest of the semester, so it is fair game for the exam as it applies to $\S \S 3.5$ through 4.4.

Problem 1.

These problems are true or false. Circle \mathbf{T} if the statement is always true. Otherwise, answer F. You do not need to justify your answer.
a) $\mathbf{T} \quad \mathbf{F}$ Suppose A is a matrix with more columns than rows. Then the matrix transformation $T(x)=A x$ cannot be one-to-one.
b) $\quad \mathbf{F} \quad$ If A is an $n \times n$ matrix and $A x=0$ has only the trivial solution, then the equation $A x=b$ is consistent for every b in \mathbf{R}^{n}.
c) $\quad \mathbf{F} \quad$ If A and B are 3×3 matrices and the columns of B are linearly dependent, then the columns of $A B$ are linearly dependent.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad$ There are linear transformations $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ and $U: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ so that $T \circ U$ is onto.
e) $\quad \mathbf{T} \quad \mathbf{F} \quad V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x-y=1+w\right\}$ is a subspace of \mathbf{R}^{4}.

Extra space for scratch work on problem 1

Problem 2.

Parts (a) to (d) are unrelated. You do not need to justify answers in (a) or (b).
a) Write three different nonzero vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{3} so that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent but v_{3} is not in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Clearly indicate which vector is v_{3}.
b) Fill in the blanks: If A is a 5×6 matrix and its column span has dimension 2, then the null space of A is \qquad -dimensional subspace of $\mathbf{R} \square$.
c) Let $A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 2 & 0 & -4 \\ -4 & 0 & 8\end{array}\right)$. Find nonzero vectors x and y in \mathbf{R}^{3} so that $A x=A y$ but $x \neq y$.
d) Let $A=\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right)$. Clearly draw $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$. Briefly show work.

Extra space for work on problem 2

Problem 3.

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation of reflection about the line $y=x$, and let
$U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be the transformation $U\binom{x}{y}=\left(\begin{array}{c}x-y \\ x \\ 3 y\end{array}\right)$.
a) Write the standard matrix A for T. Is T onto?
b) Write the standard matrix B for U. Is U one-to-one? Briefly justify your answer.
c) Circle the composition that makes sense: $T \circ U \quad U \circ T$
d) Compute the standard matrix for the composition you circled in part (c).

Extra space for work on problem 3

Problem 4.

Dino McBarker has put the matrix A below in its reduced row echelon form:

$$
A=\left(\begin{array}{cccc}
1 & -2 & 0 & 4 \\
-7 & 14 & 3 & 2 \\
4 & -8 & -2 & -4
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{cccc}
1 & -2 & 0 & 4 \\
0 & 0 & 1 & 10 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

a) Find a basis \mathcal{B} for $\operatorname{Nul}(A)$.
b) Is $x=\left(\begin{array}{c}2 \\ 3 \\ -10 \\ 1\end{array}\right)$ in $\operatorname{Nul}(A)$? If so, write x as a linear combination of your basis vectors from part (a). If not, justify why x is not in $\operatorname{Nul}(A)$.
c) Is $\left(\begin{array}{c}0 \\ -3 \\ 2\end{array}\right)$ in $\operatorname{Col}(A)$? You do not need to justify your answer.

Extra space for work on problem 4

Problem 5.

Parts (a), (b), and (c) are unrelated.
You do not need to show any work for parts (a) and (b).
a) I. Is the set $\left\{\binom{0}{0},\binom{1}{4}\right\}$ linearly independent? YES NO
II. If A is a 3×3 matrix, is it possible that $\operatorname{Col}(A)=\operatorname{Nul}(A)$?

YES NO
b) Give a specific example of a subspace of \mathbf{R}^{3} that contains $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$.
(You may express this subspace any way you like, as long as you are clear.)
c) Write a 2×3 matrix A and a 3×2 matrix B so that $A B$ is the standard matrix for the transformation of clockwise rotation by 90° in \mathbf{R}^{2}. Compute $A B$ to demonstrate that your answer is correct.

Extra space for work on problem 5

