Math 1553, Extra Practice for Midterm 3 (sections 4.5-6.5)

Solutions

1. In this problem, if the statement is always true, circle \mathbf{T}; otherwise, circle \mathbf{F}.
a) $\mathbf{T} \quad$ If A is a square matrix and the homogeneous equation $A x=0$ has only the trivial solution, then A is invertible.
b) $\mathbf{T} \quad \mathbf{F} \quad$ If A is row equivalent to B, then A and B have the same eigenvalues.
c) $\quad \mathbf{F} \quad$ If A and B have the same eigenvectors, then A and B have the same characteristic polynomial.
d) $\quad \mathbf{T}$ If A is diagonalizable, then A has n distinct eigenvalues.
e) T F If A is a matrix and $A x=b$ has a unique solution for every b in the codomain of the transformation $T(x)=A x$, then A is an invertible square matrix.
f) $\mathbf{T} \quad$ If A is an $n \times n$ matrix then $\operatorname{det}(-A)=-\operatorname{det}(A)$.
g) $\quad \mathbf{T} \quad$ If A is an $n \times n$ matrix and its eigenvectors form a basis for \mathbf{R}^{n}, then A is invertible.
h) $\mathbf{T} \quad \mathbf{F} \quad$ If 0 is an eigenvalue of the $n \times n$ matrix A, then $\operatorname{rank}(A)<n$.

Solution.

a) True by the Invertible Matrix Theorem.
b) False: for instance, the matrices $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are row equivalent, but have different eigenvalues.
c) False: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ have the same eigenvectors (all nonzero vectors in \mathbf{R}^{2}) but characteristic polynomials λ^{2} and $(1-\lambda)^{2}$, respectively.
d) False: for instance, $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is diagonal but has only one eigenvalue.
e) True: We see T is onto since $A x=b$ is consistent for all b in the codomain of T, and T is one-to-one since the solution to each equation $A x=b$ is unique, hence T (therefore A) is invertible.
f) False: Since $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$, we see $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)=\operatorname{det}(A)$ if n is even.
g) False: False. For example, the zero matrix is not invertible but its eigenvectors form a basis for \mathbf{R}^{n}.
h) True: If $\lambda=0$ is an eigenvalue of A then A is not invertible so its associated transformation $T(x)=A x$ is not onto, hence $\operatorname{rank}(A)<n$.
2. In this problem, if the statement is always true, circle \mathbf{T}; if it is always false, circle \mathbf{F}; if it is sometimes true and sometimes false, circle \mathbf{M}.
a) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ If A is a 3×3 matrix with characteristic polynomial $-\lambda^{3}+$ $\lambda^{2}+\lambda$, then A is invertible.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A 3×3 matrix with (only) two distinct eigenvalues is diagonalizable.
c) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A diagonalizable $n \times n$ matrix admits n linearly independent eigenvectors.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ if $\operatorname{det}(A)=0$, then 0 is an eigenvalue of A.

Solution.

a) False: $\lambda=0$ is a root of the characteristic polynomial, so 0 is an eigenvalue, and A is not invertible.
b) Maybe: it is diagonalizable if and only if the eigenspace for the eigenvalue with multiplicity 2 has dimension 2.
c) True: by the Diagonalization Theorem, an $n \times n$ matrix is diagonalizable if and only if it admits n linearly independent eigenvectors.
d) True: if $\operatorname{det}(A)=0$ then A is not invertible, so $A v=0 v$ has a nontrivial solution.
3. In this problem, you need not explain your answers; just circle the correct one(s). Let A be an $n \times n$ matrix.
a) Which one of the following statements is correct?

1. An eigenvector of A is a vector v such that $A v=\lambda v$ for a nonzero scalar λ.
2. An eigenvector of A is a nonzero vector v such that $A v=\lambda v$ for a scalar λ.
3. An eigenvector of A is a nonzero scalar λ such that $A v=\lambda v$ for some vector v.
4. An eigenvector of A is a nonzero vector v such that $A v=\lambda v$ for a nonzero scalar λ.
b) Which one of the following statements is not correct?
5. An eigenvalue of A is a scalar λ such that $A-\lambda I$ is not invertible.
6. An eigenvalue of A is a scalar λ such that $(A-\lambda I) v=0$ has a solution.
7. An eigenvalue of A is a scalar λ such that $A v=\lambda \nu$ for a nonzero vector v.
8. An eigenvalue of A is a scalar λ such that $\operatorname{det}(A-\lambda I)=0$.
c) Which of the following 3×3 matrices are necessarily diagonalizable over the real numbers? (Circle all that apply.)
9. A matrix with three distinct real eigenvalues.
10. A matrix with one real eigenvalue.
11. A matrix with a real eigenvalue λ of algebraic multiplicity 2 , such that the λ-eigenspace has dimension 2 .
12. A matrix with a real eigenvalue λ such that the λ-eigenspace has dimension 2.

Solution.

a) Statement 2 is correct: an eigenvector must be nonzero, but its eigenvalue may be zero.
b) Statement 2 is incorrect: the solution v must be nontrivial.
c) The matrices in 1 and 3 are diagonalizable. A matrix with three distinct real eigenvalues automatically admits three linearly independent eigenvectors. If a matrix A has a real eigenvalue λ_{1} of algebraic multiplicity 2 , then it has another real eigenvalue λ_{2} of algebraic multiplicity 1 . The two eigenspaces provide three linearly independent eigenvectors.

The matrices in 2 and 4 need not be diagonalizable.
4. Short answer.
a) Let $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & 7\end{array}\right)$, and define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=A x$. Find the area of $T(S)$, if S is a triangle in \mathbf{R}^{2} with area 2.
b) Suppose that $A=C\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1\end{array}\right) C^{-1}$, where C has columns v_{1} and v_{2}. Given x and y in the picture below, draw the vectors $A x$ and $A y$.

c) Write a diagonalizable 3×3 matrix A whose only eigenvalue is $\lambda=2$.

Solution.

a) $|\operatorname{det}(A)| \operatorname{Vol}(S)=|-7-1| \cdot 2=16$.
b) A does the same thing as $D=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1\end{array}\right)$, but in the v_{1}, v_{2}-coordinate system. Since D scales the first coordinate by $1 / 2$ and the second coordinate by -1 , hence A scales the v_{1}-coordinate by $1 / 2$ and the v_{2}-coordinate by -1 .
c) There is only one such matrix: $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$.
5. Suppose we know that

$$
\left(\begin{array}{cc}
4 & -10 \\
2 & -5
\end{array}\right)=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)^{-1} .
$$

Find $\left(\begin{array}{cc}4 & -10 \\ 2 & -5\end{array}\right)^{98}$.

Solution.

$$
\begin{aligned}
\left(\begin{array}{cc}
4 & -10 \\
2 & -5
\end{array}\right)^{98} & =\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right)^{98}\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
-2 & 5
\end{array}\right) \\
& =\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-2 & 5
\end{array}\right)=\left(\begin{array}{cc}
-4 & 10 \\
-2 & 5
\end{array}\right) .
\end{aligned}
$$

6. Let

$$
A=\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
0 & 1 & 5 & 4 \\
1 & -1 & -3 & 0 \\
-1 & 0 & 5 & 4 \\
3 & -3 & -2 & 5
\end{array}\right)
$$

a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}(B)$.
c) Compute $\operatorname{det}(A B)$.
d) Compute $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)$.

Solution.

a) The second column has three zeros, so we expand by cofactors:

$$
\operatorname{det}\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right)=-\operatorname{det}\left(\begin{array}{rrr}
-1 & 0 & 6 \\
9 & 2 & 3 \\
0 & 0 & -1
\end{array}\right)
$$

Now we expand the second column by cofactors again:

$$
\cdots=-2 \operatorname{det}\left(\begin{array}{rr}
-1 & 6 \\
0 & -1
\end{array}\right)=(-2)(-1)(-1)=-2 .
$$

b) This is a complicated matrix without a lot of zeros, so we compute the determinant by row reduction. After one row swap and several row replacements, we reduce to the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & -3 & 0 \\
0 & 1 & 5 & 4 \\
0 & 0 & 7 & 8 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

The determinant of this matrix is -21 , so the determinant of the original matrix is 21 .
c) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=(-2)(21)=-42$.
d) $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)=\operatorname{det}(A)^{2} \operatorname{det}(B)^{-1} \operatorname{det}(A) \operatorname{det}(B)^{2}=\operatorname{det}(A)^{3} \operatorname{det}(B)=(-2)^{3}(21)=$ -168 .
7. Give an example of a 2×2 real matrix A with each of the following properties. You need not explain your answer.
a) A has no real eigenvalues.
b) A has eigenvalues 1 and 2 .
c) A is diagonalizable but not invertible.
d) A is a rotation matrix with real eigenvalues.

Solution.

a) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
b) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.
c) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
d) $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
8. Consider the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & -4 \\
0 & 2 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

a) Find the eigenvalues of A, and compute their algebraic multiplicities.
b) For each eigenvalue of A, find a basis for the corresponding eigenspace.
c) Is A diagonalizable? If so, find an invertible matrix C and a diagonal matrix D such that $A=C D C^{-1}$. If not, why not?

Solution.

a) We compute the characteristic polynomial by expanding along the second row:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
4-\lambda & 2 & -4 \\
0 & 2-\lambda & 0 \\
2 & 2 & -2-\lambda
\end{array}\right)=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
4-\lambda & -4 \\
2 & -2-\lambda
\end{array}\right) \\
& =(2-\lambda)\left(\lambda^{2}-2 \lambda\right)=-\lambda(\lambda-2)^{2}
\end{aligned}
$$

The roots are 0 (with multiplicity 1) and 2 (with multiplicity 2).
b) First we compute the 0 -eigenspace by solving $(A-0 I) x=0$:

$$
A=\left(\begin{array}{ccc}
4 & 2 & -4 \\
0 & 2 & 0 \\
2 & 2 & -2
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The parametric vector form of the general solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=z\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, so a basis for the 0-eigenspace is $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$.

Next we compute the 2-eigenspace by solving $(A-2 I) x=0$:

$$
A-2 I=\left(\begin{array}{ccc}
2 & 2 & -4 \\
0 & 0 & 0 \\
2 & 2 & -4
\end{array}\right) \xrightarrow{\text { rref }}\left(\begin{array}{ccc}
1 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The parametric vector form for the general solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=y\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$, so a basis for the 2-eigenspace is $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)\right\}$.
c) We have produced three linearly independent eigenvectors, so the matrix is diagonalizable:

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)^{-1}
$$

9. Find all values of a so that $\lambda=1$ an eigenvalue of the matrix A below.

$$
A=\left(\begin{array}{cccc}
3 & -1 & 0 & a \\
a & 2 & 0 & 4 \\
2 & 0 & 1 & -2 \\
13 & a & -2 & -7
\end{array}\right)
$$

Solution.

We need to know which values of a make the matrix $A-I_{4}$ noninvertible. We have

$$
A-I_{4}=\left(\begin{array}{cccc}
2 & -1 & 0 & a \\
a & 1 & 0 & 4 \\
2 & 0 & 0 & -2 \\
13 & a & -2 & -8
\end{array}\right)
$$

We expand cofactors along the third column, then the second column:

$$
\begin{aligned}
\operatorname{det}\left(A-I_{4}\right) & =2 \operatorname{det}\left(\begin{array}{ccc}
2 & -1 & a \\
a & 1 & 4 \\
2 & 0 & -2
\end{array}\right) \\
& =(2)(1) \operatorname{det}\left(\begin{array}{cc}
a & 4 \\
2 & -2
\end{array}\right)+(2)(1) \operatorname{det}\left(\begin{array}{cc}
2 & a \\
2 & -2
\end{array}\right) \\
& =2(-2 a-8)+2(-4-2 a)=-8 a-24 .
\end{aligned}
$$

This is zero if and only if $a=-3$.
10. Consider the matrix

$$
A=\left(\begin{array}{cc}
3 \sqrt{3}-1 & -5 \sqrt{3} \\
2 \sqrt{3} & -3 \sqrt{3}-1
\end{array}\right)
$$

a) Find both complex eigenvalues of A.
b) Find an eigenvector corresponding to each eigenvalue.

Solution.

a) We compute the characteristic polynomial:

$$
\begin{aligned}
f(\lambda) & =\operatorname{det}\left(\begin{array}{cc}
3 \sqrt{3}-1-\lambda & -5 \sqrt{3} \\
2 \sqrt{3} & -3 \sqrt{3}-1-\lambda
\end{array}\right) \\
& =(-1-\lambda+3 \sqrt{3})(-1-\lambda-3 \sqrt{3})+(2)(5)(3) \\
& =(-1-\lambda)^{2}-9(3)+10(3) \\
& =\lambda^{2}+2 \lambda+4 .
\end{aligned}
$$

By the quadratic formula,

$$
\lambda=\frac{-2 \pm \sqrt{2^{2}-4(4)}}{2}=\frac{-2 \pm 2 \sqrt{3} i}{2}=-1 \pm \sqrt{3} i
$$

b) Let $\lambda=-1-\sqrt{3} i$. Then

$$
A-\lambda I=\left(\begin{array}{cc}
(i+3) \sqrt{3} & -5 \sqrt{3} \\
2 \sqrt{3} & (i-3) \sqrt{3}
\end{array}\right)
$$

Since $\operatorname{det}(A-\lambda I)=0$, the second row is a multiple of the first, so a row echelon form of A is

$$
\left(\begin{array}{cc}
i+3 & -5 \\
0 & 0
\end{array}\right)
$$

Hence an eigenvector with eigenvalue $-1-\sqrt{3} i$ is $v=\binom{5}{3+i}$. It follows that an eigenvector with eigenvalue $-1+\sqrt{3} i$ is $\bar{v}=\binom{5}{3-i}$.

