Math 1553, Extra Practice for Midterm 3 (sections 4.5-6.5)

1. In this problem, if the statement is always true, circle \mathbf{T}; otherwise, circle \mathbf{F}.
a) $\quad \mathbf{T} \quad$ If A is a square matrix and the homogeneous equation $A x=0$ has only the trivial solution, then A is invertible.
b) $\mathbf{T} \quad \mathbf{F} \quad$ If A is row equivalent to B, then A and B have the same eigenvalues.
c) $\quad \mathbf{F} \quad$ If A and B have the same eigenvectors, then A and B have the same characteristic polynomial.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is diagonalizable, then A has n distinct eigenvalues.
e) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is a matrix and $A x=b$ has a unique solution for every b in the codomain of the transformation $T(x)=A x$, then A is an invertible square matrix.
f) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is an $n \times n$ matrix then $\operatorname{det}(-A)=-\operatorname{det}(A)$.
g) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If A is an $n \times n$ matrix and its eigenvectors form a basis for \mathbf{R}^{n}, then A is invertible.
h) $\quad \mathbf{F} \quad$ If 0 is an eigenvalue of the $n \times n$ matrix A, then $\operatorname{rank}(A)<n$.
2. In this problem, if the statement is always true, circle \mathbf{T}; if it is always false, circle \mathbf{F}; if it is sometimes true and sometimes false, circle \mathbf{M}.
a) $\mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad \begin{aligned} & \text { If } A \text { is a } 3 \times 3 \text { matrix with characteristic polynomial }-\lambda^{3}+ \\ & \lambda^{2}+\lambda,\end{aligned}$ $\lambda^{2}+\lambda$, then A is invertible.
b) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A 3×3 matrix with (only) two distinct eigenvalues is diagonalizable.
c) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ A diagonalizable $n \times n$ matrix admits n linearly independent eigenvectors.
d) $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{M} \quad$ If $\operatorname{det}(A)=0$, then 0 is an eigenvalue of A.
3. In this problem, you need not explain your answers; just circle the correct one(s). Let A be an $n \times n$ matrix.
a) Which one of the following statements is correct?
4. An eigenvector of A is a vector v such that $A v=\lambda v$ for a nonzero scalar λ.
5. An eigenvector of A is a nonzero vector v such that $A v=\lambda v$ for a scalar λ.
6. An eigenvector of A is a nonzero scalar λ such that $A v=\lambda v$ for some vector v.
7. An eigenvector of A is a nonzero vector v such that $A v=\lambda v$ for a nonzero scalar λ.
b) Which one of the following statements is not correct?
8. An eigenvalue of A is a scalar λ such that $A-\lambda I$ is not invertible.
9. An eigenvalue of A is a scalar λ such that $(A-\lambda I) v=0$ has a solution.
10. An eigenvalue of A is a scalar λ such that $A v=\lambda v$ for a nonzero vector v.
11. An eigenvalue of A is a scalar λ such that $\operatorname{det}(A-\lambda I)=0$.
c) Which of the following 3×3 matrices are necessarily diagonalizable over the real numbers? (Circle all that apply.)
12. A matrix with three distinct real eigenvalues.
13. A matrix with one real eigenvalue.
14. A matrix with a real eigenvalue λ of algebraic multiplicity 2 , such that the λ-eigenspace has dimension 2 .
15. A matrix with a real eigenvalue λ such that the λ-eigenspace has dimension 2.
16. Short answer.
a) Let $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & 7\end{array}\right)$, and define a transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=A x$. Find the area of $T(S)$, if S is a triangle in \mathbf{R}^{2} with area 2.
b) Suppose that $A=C\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1\end{array}\right) C^{-1}$, where C has columns v_{1} and v_{2}. Given x and y in the picture below, draw the vectors $A x$ and $A y$.

c) Write a diagonalizable 3×3 matrix A whose only eigenvalue is $\lambda=2$.
17. Suppose we know that

$$
\left(\begin{array}{cc}
4 & -10 \\
2 & -5
\end{array}\right)=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)^{-1}
$$

Find $\left(\begin{array}{cc}4 & -10 \\ 2 & -5\end{array}\right)^{98}$.
6. Let

$$
A=\left(\begin{array}{rrrr}
7 & 1 & 4 & 1 \\
-1 & 0 & 0 & 6 \\
9 & 0 & 2 & 3 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
0 & 1 & 5 & 4 \\
1 & -1 & -3 & 0 \\
-1 & 0 & 5 & 4 \\
3 & -3 & -2 & 5
\end{array}\right)
$$

a) Compute $\operatorname{det}(A)$.
b) Compute $\operatorname{det}(B)$.
c) Compute $\operatorname{det}(A B)$.
d) Compute $\operatorname{det}\left(A^{2} B^{-1} A B^{2}\right)$.
7. Give an example of a 2×2 real matrix A with each of the following properties. You need not explain your answer.
a) A has no real eigenvalues.
b) A has eigenvalues 1 and 2 .
c) A is diagonalizable but not invertible.
d) A is a rotation matrix with real eigenvalues.
8. Consider the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & -4 \\
0 & 2 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

a) Find the eigenvalues of A, and compute their algebraic multiplicities.
b) For each eigenvalue of A, find a basis for the corresponding eigenspace.
c) Is A diagonalizable? If so, find an invertible matrix C and a diagonal matrix D such that $A=C D C^{-1}$. If not, why not?
9. Find all values of a so that $\lambda=1$ an eigenvalue of the matrix A below.

$$
A=\left(\begin{array}{cccc}
3 & -1 & 0 & a \\
a & 2 & 0 & 4 \\
2 & 0 & 1 & -2 \\
13 & a & -2 & -7
\end{array}\right)
$$

10. Consider the matrix

$$
A=\left(\begin{array}{cc}
3 \sqrt{3}-1 & -5 \sqrt{3} \\
2 \sqrt{3} & -3 \sqrt{3}-1
\end{array}\right)
$$

a) Find both complex eigenvalues of A.
b) Find an eigenvector corresponding to each eigenvalue.

