Name:______ Recitation Section:_____

Math 1553 Quiz 3, Fall 2018: Sections 3.1 and 3.2 (10 points, 10 minutes)

Show your work unless instructed otherwise! A correct answer without appropriate work will receive little or no credit.

- (2 points) Complete the following mathematical definition of linear combination (Be precise! You cannot use "span" in the definition of linear combination). Let w, v₁, v₂..., v_p be vectors in Rⁿ. We say w is a *linear combination* of v₁, v₂..., v_p if...
- **2.** (3 points) True or false. Circle TRUE if the statement is always true. Otherwise, circle FALSE. You do not need to justify your answer.

a) Span
$$\left\{ \begin{pmatrix} 5\\2 \end{pmatrix} \right\}$$
 contains the zero vector $\begin{pmatrix} 0\\0 \end{pmatrix}$. TRUE FALSE
b) Span $\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} -2\\-4\\-2 \end{pmatrix} \right\}$ is a plane. TRUE FALSE

c) Determining whether a vector equation $x_1v_1 + x_2v_2 = b$ has a solution is the the same as determining whether v_1 is in Span $\{v_2, b\}$. TRUE FALSE

3. (5 pt) Find all values of *h* so that
$$\begin{pmatrix} -1 \\ -7 \\ h \end{pmatrix}$$
 is a linear combination of $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$. Show your work!