Name:_____

Recitation Section:

Math 1553 Quiz 4, Fall 2018: Sections 3.7, 3.9, 4.1 (10 points, 10 minutes) Solutions

You do not need to show work on this quiz, except in #3d.

1. Fill in the blank: If *A* is a 4×7 matrix and the RREF of *A* has exactly two rows of zeros, then

 $\dim(\operatorname{Col} A) = \underline{2}$ and $\dim(\operatorname{Nul} A) = \underline{5}$.

The Rank Theorem states that $\dim(\operatorname{Col} A) + \dim(\operatorname{Nul} A) = 7$. From the RREF of A we
know that <i>A</i> will have $4-2 = 2$ pivots, so dim(Col <i>A</i>) = 2 and thus dim(Nul <i>A</i>) = 5.

- **2.** (2 points) True or false. Circle TRUE if the statement is always true. Otherwise, circle FALSE. You do not need to justify your answer.
 - **a)** If A is a 3×5 matrix, then the pivot columns of A form a basis for \mathbb{R}^3 .

TRUE FALSE (might not have three linearly independent columns)

b) Suppose *V* is a subspace satisfying dim(*V*) = 3 and that v_1, v_2, v_3 is a linearly independent set of vectors in *V*. Then $\{v_1, v_2, v_3\}$ must be a basis for *V*.

TRUE FALSE True by the Basis Theorem.

Turn over to the back page!

3. Consider the following matrix *A* and its reduced row echelon form:

$$A = \begin{pmatrix} -2 & 10 & -5 & -2 \\ 1 & -5 & 0 & 1 \\ -1 & 5 & -6 & -1 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & -5 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Define a matrix transformation by T(x) = Ax.

- **a)** (1 point) What is the domain of *T*? (no justification required) \mathbf{R}^4
- **b)** (1 point) What is the codomain of *T*? (no justification required) \mathbf{R}^3
- c) (2 points) Write a basis for the range of *T*. (no justification required) Since range(*T*)= Col(*A*) we just use the pivot columns of *A*:

((-2)		(-5))	
$\left \right $	$\begin{pmatrix} -2 \\ 1 \end{pmatrix}$,	$\begin{pmatrix} -5\\ 0 \end{pmatrix}$		}.
l		1	$\begin{pmatrix} -6 \end{pmatrix}$)	

d) (2 point) Find one nonzero vector in NulA.

We've been given the RREF of (A | 0), which yields $x_1 - 5x_2 + x_4 = 0$ and $x_3 = 0$, where x_2 and x_4 are free. Any nonzero vector satisfying this is fine. The parametric form of the general solution would be

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} 5 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix},$$

so the most natural candidates are $\begin{pmatrix} 5 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.