Name: \qquad
\qquad
Math 1553 Quiz 4, Fall 2018: Sections 3.7, 3.9, 4.1 (10 points, 10 minutes)
Solutions

You do not need to show work on this quiz, except in \#3d.

1. Fill in the blank: If A is a 4×7 matrix and the RREF of A has exactly two rows of zeros, then

$$
\operatorname{dim}(\operatorname{Col} A)=2 \quad \text { and } \quad \operatorname{dim}(\operatorname{Nul} A)=5 .
$$

The Rank Theorem states that $\operatorname{dim}(\operatorname{Col} A)+\operatorname{dim}(\operatorname{Nul} A)=7$. From the RREF of A we know that A will have $4-2=2$ pivots, so $\operatorname{dim}(\operatorname{Col} A)=2$ and thus $\operatorname{dim}(\operatorname{Nul} A)=5$.
2. (2 points) True or false. Circle TRUE if the statement is always true. Otherwise, circle FALSE. You do not need to justify your answer.
a) If A is a 3×5 matrix, then the pivot columns of A form a basis for \mathbf{R}^{3}.

TRUE FALSE (might not have three linearly independent columns)
b) Suppose V is a subspace satisfying $\operatorname{dim}(V)=3$ and that v_{1}, v_{2}, v_{3} is a linearly independent set of vectors in V. Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ must be a basis for V.

TRUE FALSE
True by the Basis Theorem.

Turn over to the back page!
3. Consider the following matrix A and its reduced row echelon form:

$$
A=\left(\begin{array}{cccc}
-2 & 10 & -5 & -2 \\
1 & -5 & 0 & 1 \\
-1 & 5 & -6 & -1
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{cccc}
1 & -5 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Define a matrix transformation by $T(x)=A x$.
a) (1 point) What is the domain of T ? (no justification required) \mathbf{R}^{4}
b) (1 point) What is the codomain of T ? (no justification required) \mathbf{R}^{3}
c) (2 points) Write a basis for the range of T. (no justification required) Since range $(T)=\operatorname{Col}(A)$ we just use the pivot columns of A :

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
-5 \\
0 \\
-6
\end{array}\right)\right\} .
$$

d) (2 point) Find one nonzero vector in NulA.

We've been given the RREF of $(A \mid 0)$, which yields $x_{1}-5 x_{2}+x_{4}=0$ and $x_{3}=0$, where x_{2} and x_{4} are free. Any nonzero vector satisfying this is fine. The parametric form of the general solution would be

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{l}
5 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)
$$

so the most natural candidates are $\left(\begin{array}{l}5 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$.

