Name: \qquad
\qquad

Math 1553 Quiz 6, Fall 2018: Sections 5.1-5.3 (10 points, 10 minutes)

Solutions

Show your work and justify answers unless instructed otherwise, or you will receive little or no credit.

1. (1 point) Suppose A and B are $n \times n$ matrices and that $A B$ is invertible. Must it be true that A and B are both invertible? YES NO

Solution.

Yes. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \neq 0$, therefore $\operatorname{det}(A) \neq 0$ and $\operatorname{det}(B) \neq 0$, so both A and B are invertible.
2. (6 pts) Suppose $\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=3$.
a) Find $\operatorname{det}\left(2\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)\right)$.

Let's call the matrix given in the problem M. Since M is a 3×3 matrix,

$$
\operatorname{det}(2 M)=2^{3} \operatorname{det}(M)=2^{3}(3)=24 .
$$

b) Find $\operatorname{det}\left(A^{-1}\right)$ if $A=\left(\begin{array}{ccc}-2 a+d & -2 b+e & -2 c+f \\ a & b & c \\ g & h & i\end{array}\right)$.

To get A, we start with the matrix given in the problem, swap the first two rows, then do a row replacement (adding $-2 R_{2}$ to R_{1}). All of this just multiplies the original matrix's determinant by -1 . Therefore,

$$
\operatorname{det}(A)=-3, \quad \text { so } \quad \operatorname{det}\left(A^{-1}\right)=-\frac{1}{3}
$$

3. (3 points) Find all values of k (if there are any) so that

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & k & 3 \\
0 & 0 & k \\
k & 1 & 2
\end{array}\right)=0
$$

We solve using the cofactor expansion of the determinant along the second row:

$$
0=k(-1)^{2+3} \operatorname{det}\left(\begin{array}{cc}
1 & k \\
k & 1
\end{array}\right)=-k\left(1-k^{2}\right), \quad \text { so } \quad 0=-k(1-k)(1+k)
$$

Our values of k are $k=0, k=1, k=-1$.

