Math 1553 Worksheet §6.4, 6.5

1. Answer yes, no, or maybe. Justify your answers. In each case, A is a matrix whose entries are real numbers.
a) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2-dimensional.
b) If A is an invertible 2×2 matrix, then A is diagonalizable.
c) A 3×3 matrix A can have a non-real complex eigenvalue with multiplicity 2 .
d) Suppose A is a 7×7 matrix with four distinct eigenvalues. If one eigenspace has dimension 2 , while another eigenspace has dimension 3 , then A must be diagonalizable.
2. $A=\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1\end{array}\right)$.
a) Find the eigenvalues of A, and find a basis for each eigenspace.
b) Is A diagonalizable? If your answer is yes, find a diagonal matrix D and an invertible matrix C so that $A=C D C^{-1}$. If your answer is no, justify why A is not diagonalizable.
