Math 1553 Worksheet §6.4, 6.5

- **1.** Answer yes, no, or maybe. Justify your answers. In each case, *A* is a matrix whose entries are real numbers.
 - a) If *A* is a 3 × 3 matrix with characteristic polynomial $-\lambda(\lambda 5)^2$, then the 5-eigenspace is 2-dimensional.

b) If *A* is an invertible 2×2 matrix, then *A* is diagonalizable.

c) A 3×3 matrix *A* can have a non-real complex eigenvalue with multiplicity 2.

d) Suppose *A* is a 7×7 matrix with four distinct eigenvalues. If one eigenspace has dimension 2, while another eigenspace has dimension 3, then *A* must be diagonalizable.

2.
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$
.

a) Find the eigenvalues of *A*, and find a basis for each eigenspace.

b) Is *A* diagonalizable? If your answer is yes, find a diagonal matrix *D* and an invertible matrix *C* so that $A = CDC^{-1}$. If your answer is no, justify why *A* is not diagonalizable.