Math 1553 Worksheet §3.5-3.7, 3.9, 4.1

Solutions

1. Every color on my computer monitor is a vector in \mathbf{R}^{3} with coordinates between 0 and 255, inclusive. The coordinates correspond to the amount of red, green, and blue in the color.

Given colors $v_{1}, v_{2}, \ldots, v_{p}$, we can form a "weighted average" of these colors by making a linear combination

$$
v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}
$$

with $c_{1}+c_{2}+\cdots+c_{p}=1$. Example:

$\begin{aligned} & \text { Consider the colors on the right. Are these col- } \\ & \text { ors linearly independent? What does this tell you } \\ & \text { about the colors? }\end{aligned}\left(\begin{array}{c}240 \\ 140 \\ 0\end{array}\right)\left(\begin{array}{c}0 \\ 120 \\ 100\end{array}\right)\left(\begin{array}{c}60 \\ 125 \\ 75\end{array}\right)$
After doing this problem, check out the interactive demo, where you can adjust sliders to find a
 prescribed color.

Solution.

The vectors

$$
\left(\begin{array}{c}
240 \\
140 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
120 \\
100
\end{array}\right), \quad\left(\begin{array}{c}
60 \\
125 \\
75
\end{array}\right)
$$

are linearly independent if and only if the vector equation

$$
x\left(\begin{array}{c}
240 \\
140 \\
0
\end{array}\right)+y\left(\begin{array}{c}
0 \\
120 \\
100
\end{array}\right)+z\left(\begin{array}{c}
60 \\
125 \\
75
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

has only the trivial solution. This translates into the matrix (we don't need to augment since it's a homogeneous system)

$$
\left(\begin{array}{ccc}
240 & 0 & 60 \\
140 & 120 & 125 \\
0 & 100 & 75
\end{array}\right) \stackrel{\text { rref }}{\text { ma }}\left(\begin{array}{ccc}
1 & 0 & .25 \\
0 & 1 & .75 \\
0 & 0 & 0
\end{array}\right) \xrightarrow[\text { parametric }]{ } \begin{aligned}
& x=-.25 z \\
&
\end{aligned}
$$

Hence the vectors are linearly dependent; taking $z=1$ gives the linear dependence relation

$$
-\frac{1}{4}\left(\begin{array}{c}
240 \\
140 \\
0
\end{array}\right)-\frac{3}{4}\left(\begin{array}{c}
0 \\
120 \\
100
\end{array}\right)+\left(\begin{array}{c}
60 \\
125 \\
75
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Rearranging gives

$$
\left(\begin{array}{c}
60 \\
125 \\
75
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
240 \\
140 \\
0
\end{array}\right)+\frac{3}{4}\left(\begin{array}{c}
0 \\
120 \\
100
\end{array}\right) .
$$

In terms of colors:

2. Circle TRUE if the statement is always true, and circle FALSE otherwise.
a) If A is a 3×100 matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.

TRUE FALSE
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of A form a basis for \mathbf{R}^{m}.

TRUE FALSE
c) The set $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x-4 z=0\right\}$ is a subspace of \mathbf{R}^{4}.

TRUE FALSE

Solution.

a) False. By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Nul} A)=100$, $\operatorname{sodim}(\operatorname{Nul} A)=98$.
b) False. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ has only the trivial solution for $A x=0$, but its column space is a 2-dimensional subspace of \mathbf{R}^{3}.
c) True. V is $\operatorname{Nul}(A)$ for the 1×4 matrix A below, and therefore is automatically a subspace of \mathbf{R}^{4} :

$$
A=\left(\begin{array}{llll}
1 & 0 & -4 & 0
\end{array}\right) .
$$

Alternatively, we could verify the subspace properties directly if we wished. This is much more work!
(1) The zero vector is in V, since $0-4(0) 0=0$.
(2) Let $u=\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1} \\ w_{1}\end{array}\right)$ and $v=\left(\begin{array}{l}x_{2} \\ y_{2} \\ z_{2} \\ w_{2}\end{array}\right)$ be in V, so $x_{1}-4 z_{1}=0$ and $x_{2}-4 z_{2}=0$. We compute

$$
\begin{aligned}
& u+v=\left(\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2} \\
z_{1}+z_{2} \\
w_{1}+w_{2}
\end{array}\right) . \\
& \text { Is }\left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=0 \text { ? Yes, since } \\
& \left(x_{1}+x_{2}\right)-4\left(z_{1}+z_{2}\right)=\left(x_{1}-4 z_{1}\right)+\left(x_{2}-4 z_{2}\right)=0+0=0 . \\
& \text { (3) If } u=\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right) \text { is in } V \text { then so is } c u \text { for any scalar } c: \\
& c u=\left(\begin{array}{c}
c x \\
c y \\
c z \\
c w
\end{array}\right) \quad \text { and } \quad c x-4 c z=c(x-4 z)=c(0)=0 .
\end{aligned}
$$

3. Let $A=\left(\begin{array}{cccc}1 & -5 & -2 & -4 \\ 2 & 3 & 9 & 5 \\ 1 & 1 & 4 & 2\end{array}\right)$, and let T be the matrix transformation associated to A, so $T(x)=A x$.
a) What is the domain of T ? What is the codomain of T ? Give an example of a vector in the range of T.
b) The RREF of A is $\left(\begin{array}{llll}1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$. Is there a vector in the codomain of T which is not in the range of T ? Justify your answer.

Solution.

a) The domain is \mathbf{R}^{4}; the codomain is \mathbf{R}^{3}. The vector $0=T(0)$ is contained in the range, as is

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=T\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

b) Yes. The range of T is the column span of A, and from the RREF of A we know A only has two pivots, so its column span is a 2-dimensional subspace of \mathbf{R}^{3}. Since $\operatorname{dim}\left(\mathbf{R}^{3}\right)=3$, the range is not equal to \mathbf{R}^{3}.

