Math 1553 Worksheet §4.4, Matrix Multiplication

Solutions

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined? Very briefly justify your answer.
a) $A-B$
b) $A B$
c) $A^{T} B$
d) $B^{T} A$
e) A^{2}

Solution.

Only (c) and (d).
a) $A-B$ is nonsense. In order for $A-B$ to be defined, A and B need to have the same number of rows and same number of columns as each other.
b) $A B$ is undefined since the number of columns of A does not equal the number of rows of B.
c) A^{T} is 5×3 and B is 3×2, so $A^{T} B$ is a 5×2 matrix.
d) B^{T} is 2×3 and A is 3×5, so $B^{T} A$ is a 2×5 matrix.
e) A^{2} is nonsense (can't do 3×5 times 3×5).
2. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) Suppose A and B are matrices and the matrix product $A B$ is defined. Then each column of $A B$ must be a linear combination of the columns of A.
b) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{2} and codomain \mathbf{R}^{3}.
c) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ are linear transformations and $U \circ T$ is onto. Then U and T must both be onto.

Solution.

a) True. If we let v_{1}, \ldots, v_{p} be the columns of B, then $A B=\left(\begin{array}{llll}A v_{1} & A v_{2} & \cdots & A v_{p}\end{array}\right)$, where $A v_{i}$ is in the column span of A for every i (this is part of the definition of matrix multiplication of vectors).
b) True. In order for $B x$ to make sense, x must be in \mathbf{R}^{2}, and so $B x$ is in \mathbf{R}^{4} and $A(B x)$ is in \mathbf{R}^{3}. Therefore, the domain of Z is \mathbf{R}^{2} and the codomain of Z is \mathbf{R}^{3}.
c) False. Take the linear transformations $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ and $U: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by $T(x, y, z)=(x, y, 0)$ and $U(x, y, z)=(x, y)$. Then $(U \circ T)(x, y, z)=(x, y)$, so
$U \circ T$ maps \mathbf{R}^{3} onto \mathbf{R}^{2}. However, T is not onto since the z-coordinate of every vector in its image is 0 .
3. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be rotation clockwise by 60°. Let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation with standard matrix $\left(\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right)$.
a) Find the standard matrix for the composition $U \circ T$.
b) Find the standard matrix for the composition $T \circ U$.
c) Is rotating clockwise by 60° and then performing U, the same as first performing U and then rotating clockwise by 60° ?

Solution.

a) The matrix for T is $\left(\begin{array}{cc}\cos \left(-60^{\circ}\right) & -\sin \left(-60^{\circ}\right) \\ \sin \left(-60^{\circ}\right) & \cos \left(-60^{\circ}\right)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$. The matrix for $U \circ T$ is

$$
\left(\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
-1-\frac{\sqrt{3}}{2} & \frac{1}{2}-\sqrt{3} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right) .
$$

b) The matrix for $T \circ U$ is

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1+\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2}+\sqrt{3} & -\frac{\sqrt{3}}{2}
\end{array}\right) .
$$

c) No. In (a) and (b), we found that the standard matrices for $U \circ T$ and $T \circ U$ are different, so the transformations are different.

