Math 1553 Worksheet §4.4, Matrix Multiplication

Solutions

- **1.** If *A* is a 3×5 matrix and *B* is a 3×2 matrix, which of the following are defined? Very briefly justify your answer.
 - **a)** *A*−*B*
 - **b)** *AB*
 - c) $A^T B$
 - **d)** $B^T A$
 - **e)** *A*²

Solution.

Only (c) and (d).

- a) A-B is nonsense. In order for A-B to be defined, A and B need to have the same number of rows and same number of columns as each other.
- **b)** *AB* is undefined since the number of columns of *A* does not equal the number of rows of *B*.
- **c)** A^T is 5×3 and *B* is 3×2 , so $A^T B$ is a 5×2 matrix.
- **d)** B^T is 2 × 3 and A is 3 × 5, so $B^T A$ is a 2 × 5 matrix.
- e) A^2 is nonsense (can't do 3×5 times 3×5).
- **2.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) Suppose *A* and *B* are matrices and the matrix product *AB* is defined. Then each column of *AB* must be a linear combination of the columns of *A*.
 - **b)** If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^2 and codomain \mathbb{R}^3 .
 - c) Suppose $T : \mathbf{R}^n \to \mathbf{R}^m$ and $U : \mathbf{R}^m \to \mathbf{R}^p$ are linear transformations and $U \circ T$ is onto. Then *U* and *T* must both be onto.

Solution.

- **a)** True. If we let v_1, \ldots, v_p be the columns of *B*, then $AB = (Av_1 \ Av_2 \ \cdots \ Av_p)$, where Av_i is in the column span of *A* for every *i* (this is part of the definition of matrix multiplication of vectors).
- **b)** True. In order for Bx to make sense, x must be in \mathbb{R}^2 , and so Bx is in \mathbb{R}^4 and A(Bx) is in \mathbb{R}^3 . Therefore, the domain of Z is \mathbb{R}^2 and the codomain of Z is \mathbb{R}^3 .
- c) False. Take the linear transformations $T : \mathbf{R}^3 \to \mathbf{R}^3$ and $U : \mathbf{R}^3 \to \mathbf{R}^2$ given by T(x, y, z) = (x, y, 0) and U(x, y, z) = (x, y). Then $(U \circ T)(x, y, z) = (x, y)$, so

/= >

 $U \circ T$ maps \mathbb{R}^3 onto \mathbb{R}^2 . However, *T* is not onto since the *z*-coordinate of every vector in its image is 0.

- **3.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation *clockwise* by 60°. Let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$.
 - **a)** Find the standard matrix for the composition $U \circ T$.
 - **b)** Find the standard matrix for the composition $T \circ U$.
 - c) Is rotating clockwise by 60° and then performing *U*, the same as first performing *U* and then rotating clockwise by 60° ?

Solution.

a) The matrix for T is
$$\begin{pmatrix} \cos(-60^\circ) & -\sin(-60^\circ) \\ \sin(-60^\circ) & \cos(-60^\circ) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
. The matrix for $U \circ T$ is $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -1 - \frac{\sqrt{3}}{2} & \frac{1}{2} - \sqrt{3} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$.

b) The matrix for $T \circ U$ is

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 + \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} + \sqrt{3} & -\frac{\sqrt{3}}{2} \end{pmatrix}.$$

c) No. In (a) and (b), we found that the standard matrices for $U \circ T$ and $T \circ U$ are different, so the transformations are different.