Math 1553 Worksheet §4.4, Matrix Multiplication

Solutions

1. If \(A \) is a \(3 \times 5 \) matrix and \(B \) is a \(3 \times 2 \) matrix, which of the following are defined? Very briefly justify your answer.
 a) \(A - B \)
 b) \(AB \)
 c) \(A^T B \)
 d) \(B^T A \)
 e) \(A^2 \)

Solution.
Only (c) and (d).

a) \(A - B \) is nonsense. In order for \(A - B \) to be defined, \(A \) and \(B \) need to have the same number of rows and same number of columns as each other.

b) \(AB \) is undefined since the number of columns of \(A \) does not equal the number of rows of \(B \).

c) \(A^T \) is \(5 \times 3 \) and \(B \) is \(3 \times 2 \), so \(A^T B \) is a \(5 \times 2 \) matrix.

d) \(B^T \) is \(2 \times 3 \) and \(A \) is \(3 \times 5 \), so \(B^T A \) is a \(2 \times 5 \) matrix.

e) \(A^2 \) is nonsense (can’t do \(3 \times 5 \) times \(3 \times 5 \)).

2. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
 a) Suppose \(A \) and \(B \) are matrices and the matrix product \(AB \) is defined. Then each column of \(AB \) must be a linear combination of the columns of \(A \).
 b) If \(A \) is a \(3 \times 4 \) matrix and \(B \) is a \(4 \times 2 \) matrix, then the linear transformation transformation \(Z \) defined by \(Z(x) = ABx \) has domain \(\mathbb{R}^2 \) and codomain \(\mathbb{R}^3 \).
 c) Suppose \(T : \mathbb{R}^3 \to \mathbb{R}^m \) and \(U : \mathbb{R}^m \to \mathbb{R}^p \) are linear transformations and \(U \circ T \) is onto. Then \(U \) and \(T \) must both be onto.

Solution.

a) True. If we let \(v_1, \ldots, v_p \) be the columns of \(B \), then \(AB = \left(Av_1 \ Av_2 \cdots Av_p \right) \), where \(Av_i \) is in the column span of \(A \) for every \(i \) (this is part of the definition of matrix multiplication of vectors).

b) True. In order for \(Bx \) to make sense, \(x \) must be in \(\mathbb{R}^2 \), and so \(Bx \) is in \(\mathbb{R}^4 \) and \(ABx \) is in \(\mathbb{R}^3 \). Therefore, the domain of \(Z \) is \(\mathbb{R}^2 \) and the codomain of \(Z \) is \(\mathbb{R}^3 \).

c) False. Take the linear transformations \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) and \(U : \mathbb{R}^3 \to \mathbb{R}^2 \) given by \(T(x, y, z) = (x, y, 0) \) and \(U(x, y, z) = (x, y) \). Then \((U \circ T)(x, y, z) = (x, y) \), so
$U \circ T$ maps \mathbb{R}^3 onto \mathbb{R}^2. However, T is not onto since the z-coordinate of every vector in its image is 0.

3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation clockwise by 60°. Let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix $\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$.

 a) Find the standard matrix for the composition $U \circ T$.

 b) Find the standard matrix for the composition $T \circ U$.

 c) Is rotating clockwise by 60° and then performing U, the same as first performing U and then rotating clockwise by 60°?

Solution.

a) The matrix for T is $\begin{pmatrix} \cos(-60^\circ) & -\sin(-60^\circ) \\ \sin(-60^\circ) & \cos(-60^\circ) \end{pmatrix} = \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix}$. The matrix for $U \circ T$ is $$\begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix} = \begin{pmatrix} -1 + \sqrt{3}/2 & 1/2 - \sqrt{3}/2 \\ 1/2 + \sqrt{3}/2 & -1 + \sqrt{3}/2 \end{pmatrix}.$$

b) The matrix for $T \circ U$ is $$\begin{pmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 + \sqrt{3}/2 & 1/2 + \sqrt{3}/2 \\ 1/2 - \sqrt{3}/2 & -1 + \sqrt{3}/2 \end{pmatrix}.$$

c) No. In (a) and (b), we found that the standard matrices for $U \circ T$ and $T \circ U$ are different, so the transformations are different.