Math 1553 Worksheet §4.4, Matrix Multiplication

1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined? Very briefly justify your answer.
a) $A-B$
b) $A B$
c) $A^{T} B$
d) $B^{T} A$
e) A^{2}
2. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
a) Suppose A and B are matrices and the matrix product $A B$ is defined. Then each column of $A B$ must be a linear combination of the columns of A.
b) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation transformation Z defined by $Z(x)=A B x$ has domain \mathbf{R}^{2} and codomain \mathbf{R}^{3}.
c) Suppose $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ are linear transformations and $U \circ T$ is onto. Then U and T must both be onto.
3. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be rotation clockwise by 60°. Let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformation with standard matrix $\left(\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right)$.
a) Find the standard matrix for the composition $U \circ T$.
b) Find the standard matrix for the composition $T \circ U$.
c) Is rotating clockwise by 60° and then performing U, the same as first performing U and then rotating clockwise by 60° ?
