1. If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined? Very briefly justify your answer.
 a) $A - B$
 b) AB
 c) $A^T B$
 d) $B^T A$
 e) A^2

2. True or false (justify your answer). Answer true if the statement is always true. Otherwise, answer false.
 a) Suppose A and B are matrices and the matrix product AB is defined. Then each column of AB must be a linear combination of the columns of A.
 b) If A is a 3×4 matrix and B is a 4×2 matrix, then the linear transformation Z defined by $Z(x) = ABx$ has domain \mathbb{R}^2 and codomain \mathbb{R}^3.
 c) Suppose $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $U: \mathbb{R}^m \rightarrow \mathbb{R}^p$ are linear transformations and $U \circ T$ is onto. Then U and T must both be onto.
3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation clockwise by 60°. Let $U : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation with standard matrix \[
\begin{pmatrix}
-2 & 1 \\
1 & 0
\end{pmatrix}.
\]

a) Find the standard matrix for the composition $U \circ T$.

b) Find the standard matrix for the composition $T \circ U$.

c) Is rotating clockwise by 60° and then performing U, the same as first performing U and then rotating clockwise by 60°?