Orthogonal Projections

Recall: Let W be a subspace of \mathbf{R}^{n}.

- The orthogonal complement W^{\perp} is the set of vectors orthogonal to everything in W.
- The orthogonal decomposition of a vector x with respect to W is the unique way of writing $x=x_{W}+x_{W \perp}$ for x_{W} in W and $x_{W \perp}$ in W^{\perp}.
- The vector x_{W} is the orthogonal projection of x onto W. It is the closest vector to x in W.
- To compute x_{W}, write W as $\operatorname{Col} A$ and solve $A^{T} A v=A^{T} x$; then $x_{w}=A v$.

Projection as a Transformation

Change in Perspective: let us consider orthogonal projection as a transformation.

Definition

Let W be a subspace of \mathbf{R}^{n}. Define a transformation

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \quad \text { by } \quad T(x)=x_{w} .
$$

This transformation is also called orthogonal projection with respect to W.
Theorem
Let W be a subspace of \mathbf{R}^{n} and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the orthogonal projection with respect to W. Then:

1. T is a linear transformation.
2. For every x in $\mathbf{R}^{n}, T(x)$ is the closest vector to x in W.
3. For every x in W, we have $T(x)=x$.
4. For every x in W^{\perp}, we have $T(x)=0$.
5. $T \circ T=T$.
6. The range of T is W and the null space of T is W^{\perp}.

Projection Matrix

Method 1

Let W be a subspace of \mathbf{R}^{n} and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the orthogonal projection with respect to W.

Since T is a linear transformation, it has a matrix. How do you compute it?
The same as any other linear transformation: compute $T\left(e_{1}\right), T\left(e_{2}\right), \ldots, T\left(e_{n}\right)$.

Projection Matrix

Example

Problem: Let $L=\operatorname{Span}\left\{\binom{3}{2}\right\}$ and let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the orthogonal projection onto L. Compute the matrix A for T.

It's easy to compute orthogonal projection onto a line:

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(e_{1}\right)_{L}=\frac{u \cdot e_{1}}{u \cdot u} u=\frac{3}{13}\binom{3}{2} \\
T\left(e_{2}\right)=\left(e_{2}\right)_{L}=\frac{u \cdot e_{2}}{u \cdot u} u=\frac{2}{13}\binom{3}{2}
\end{array}\right\} \quad \Longrightarrow \quad A=\frac{1}{13}\left(\begin{array}{ll}
9 & 6 \\
6 & 4
\end{array}\right) .
$$

Projection Matrix

Another Example

Problem: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be orthogonal projection onto W. Compute the matrix B for T.

In the slides for the last lecture we computed $W=\operatorname{Col} A$ for

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

To compute $T\left(e_{i}\right)$ we have to solve the matrix equation $A^{T} A v=A^{T} e_{i}$. We have

$$
A^{T} A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad A^{T} e_{i}=\text { the } i \text { th column of } A^{T}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

Projection Matrix

Another Example, Continued

Problem: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be orthogonal projection onto W. Compute the matrix B for T.

$$
\begin{aligned}
& \left(\begin{array}{rr|r}
2 & -1 & 1 \\
-1 & 2 & -1
\end{array}\right) \stackrel{\text { RREF }}{\sim m m}\left(\begin{array}{rr|r}
1 & 0 & 1 / 3 \\
0 & 1 & -1 / 3
\end{array}\right) \Longrightarrow T\left(e_{1}\right)=\frac{1}{3} A\binom{1}{-1}=\frac{1}{3}\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right) \\
& \left(\begin{array}{rr|r}
2 & -1 & 1 \\
-1 & 2 & 0
\end{array}\right) \stackrel{\text { RREF }}{\sim \sim \sim m} \rightarrow\left(\begin{array}{ll|l}
1 & 0 & 2 / 3 \\
0 & 1 & 1 / 3
\end{array}\right) \Longrightarrow T\left(e_{2}\right)=\frac{1}{3} A\binom{2}{1}=\frac{1}{3}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \\
& \left(\begin{array}{rr|r}
2 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right) \stackrel{\text { RREF }}{\sim \sim \sim} \rightarrow\left(\begin{array}{ll|r}
1 & 0 & 1 / 3 \\
0 & 1 & 2 / 3
\end{array}\right) \Longrightarrow T\left(e_{2}\right)=\frac{1}{3} A\binom{1}{2}=\frac{1}{3}\left(\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right) \\
& \Longrightarrow B=\frac{1}{3}\left(\begin{array}{rrr}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

Projection Matrix

Method 2

Theorem

Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a linearly independent set in \mathbf{R}^{n}, and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right) .
$$

Then the $m \times m$ matrix $A^{T} A$ is invertible.
Proof: We'll show $\operatorname{Nul}\left(A^{T} A\right)=\{0\}$. Suppose $A^{T} A v=0$. Then $A v$ is in $\operatorname{Nul}\left(A^{T}\right)=\operatorname{Col}(A)^{\perp}$. But $A v$ is in $\operatorname{Col}(A)$ as well, so $A v=0$, and hence $v=0$ because the columns of A are linearly independent.

Projection Matrix

Method 2

Theorem

Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a linearly independent set in \mathbf{R}^{n}, and let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{m} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Then the $m \times m$ matrix $A^{T} A$ is invertible.
Let W be a subspace of \mathbf{R}^{n} and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the orthogonal projection with respect to W. Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis for W and let A be the matrix with columns $v_{1}, v_{2}, \ldots, v_{m}$. To compute $T(x)=x_{W}$ you solve $A^{T} A v=A x$; then $x_{w}=A v$.

$$
v=\left(A^{T} A\right)^{-1}\left(A^{T} x\right) \Longrightarrow T(x)=A v=\left[A\left(A^{T} A\right)^{-1} A^{T}\right] x
$$

If the columns of A are a basis for W then the matrix for T is

$$
A\left(A^{T} A\right)^{-1} A^{T}
$$

Projection Matrix

Example

Problem: Let $L=\operatorname{Span}\left\{\binom{3}{2}\right\}$ and let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the orthogonal projection onto L. Compute the matrix A for T.

The set $\left\{\binom{3}{2}\right\}$ is a basis for L, so

$$
A=u\left(u^{T} u\right)^{-1} u^{T}=\frac{1}{u \cdot u} u u^{T}=\frac{1}{13}\binom{3}{2}\left(\begin{array}{ll}
3 & 2
\end{array}\right)=\frac{1}{13}\left(\begin{array}{ll}
9 & 6 \\
6 & 4
\end{array}\right) .
$$

Matrix of Projection onto a Line
If $L=\operatorname{Span}\{u\}$ is a line in \mathbf{R}^{n}, then the matrix for projection onto L is

$$
\frac{1}{u \cdot u} u u^{T} .
$$

Projection Matrix

Another Example

Problem: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be orthogonal projection onto W. Compute the matrix B for T.

In the slides for the last lecture we computed $W=\operatorname{Col} A$ for

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

The columns are linearly independent, so they form a basis for W. Hence

$$
\begin{aligned}
B=A\left(A^{T} A\right)^{-1} A^{T}=A\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)^{-1} A^{T} & =\frac{1}{3} A\left(\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right) A^{T} \\
& =\frac{1}{3}\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Let W be a subspace of \mathbf{R}^{n} which is neither the zero subspace nor all of \mathbf{R}^{n}.
Poll
Let A be the matrix for proj_{W}. What is/are the eigenvalue(s) of A ?
A. 0
B. 1 C. -1
D. 0,1
E. $1,-1$
F. $0,-1$
G. $-1,0,1$

The 1-eigenspace is W.
The 0 -eigenspace is W^{\perp}.
We have $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$, so that gives n linearly independent eigenvectors already.

So the answer is D.

Projection Matrix

Facts

Theorem

Let W be an m-dimensional subspace of \mathbf{R}^{n}, let $T: \mathbf{R}^{n} \rightarrow W$ be the projection, and let A be the matrix for T. Then:

1. $\operatorname{Col} A=W$, which is the 1 -eigenspace.
2. Nul $A=W^{\perp}$, which is the 0-eigenspace.
3. $A^{2}=A$.
4. A is similar to the diagonal matrix with m ones and $n-m$ zeros on the diagonal.

Proof of 4: Let $v_{1}, v_{2}, \ldots, v_{m}$ be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_{n}$ be a basis for W^{\perp}. These are (linearly independent) eigenvectors with eigenvalues 1 and 0 , respectively, and they form a basis for \mathbf{R}^{n} because there are n of them.

Example: If W is a plane in \mathbf{R}^{3}, then A is similar to projection onto the $x y$-plane:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

A Projection Matrix is Diagonalizable

Let W be an m-dimensional subspace of \mathbf{R}^{n}, let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the orthogonal projection onto W, and let A be the matrix for T. Here's how to diagonalize A :

- Find a basis $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ for W.
- Find a basis $\left\{v_{m+1}, v_{m+2}, \ldots, v_{n}\right\}$ for W^{\perp}.
- Then

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)^{-1}
$$

Remark: If you already have a basis for W, then it's faster to compute $A\left(A^{T} A\right)^{-1} A^{T}$.

A Projection Matrix is Diagonalizable

Example

Problem: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

and let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be orthogonal projection onto W. Compute the matrix B for T.

As we have seen several times, a basis for W is

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

By definition, W is the orthogonal complement of the line spanned by $(1,-1,1)$, so $W^{\perp}=\operatorname{Span}\{(1,-1,1)\}$. Hence

$$
B=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
$$

General Reflections (Just for fun!)

Let W be a subspace of \mathbf{R}^{n} and let x be a vector in \mathbf{R}^{n}.

Definition

The reflection of x over W is the vector $\operatorname{ref}_{W}(x)=x-2 x_{W \perp}$.
In other words, to find $\operatorname{ref}_{w}(x)$ one starts at x, then moves to $x-x_{W \perp}=x_{W}$, then continues in the same direction one more time, to end on the opposite side of W.

Since $x_{W \perp}=x-x_{W}$ we have

$$
\operatorname{ref}_{w}(x)=x-2\left(x-x_{W}\right)=2 x_{W}-x
$$

If T is the orthogonal projection, then

$$
\operatorname{ref}_{w}(x)=2 T(x)-x
$$

Reflections

Properties

Theorem

Let W be an m-dimensional subspace of \mathbf{R}^{n}, and let A be the matrix for ref_{w}. Then

1. $\operatorname{ref}_{W} \circ \operatorname{ref}_{W}$ is the identity transformation and A^{2} is the identity matrix.
2. ref w and A are invertible; they are their own inverses.
3. The 1 -eigenspace of A is W and the -1-eigenspace of A is W^{\perp}.
4. A is similar to the diagonal matrix with m ones and $n-m$ negative ones on the diagonal.
5. If B is the matrix for the orthogonal projection onto W, then $A=2 B-I_{n}$.

Example: Let

$$
W=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { in } \mathbf{R}^{3} \mid x_{1}-x_{2}+x_{3}=0\right\}
$$

The matrix for ref w is

$$
A=2 \cdot \frac{1}{3}\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)-I_{3}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & -2 \\
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right)
$$

Summary

Today we considered orthogonal projection as a transformation.

- Orthogonal projection is a linear transformation.
- We gave three methods to compute its matrix.
- Four if you count the special case when W is a line.
- The matrix for projection onto W has eigenvalues 1 and 0 with eigenspaces W and W^{\perp}.
- A projection matrix is diagonalizable.
- Reflection is $2 \times$ projection minus the identity.

