Supplemental problems: §5.6

1. Suppose the internet has four pages in the following manner. Arrows represent links from one page towards another. For example, page 1 links to page 4 but not vice versa.

![Diagram of internet links]

a) Write the importance matrix for this internet.

b) Assume there is no damping factor, so the importance matrix is the Google matrix. The 1-eigenspace is spanned by \[
\begin{pmatrix}
3/4 \\
3/4 \\
3/4 \\
1
\end{pmatrix}
\]. Find the steady-state vector for the Google matrix. What page has the highest rank?

Solution.

(a) The importance matrix is

\[
A = \begin{pmatrix}
0 & 0 & 1 & 0 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 0 & 0 & 1/2 \\
1/3 & 1 & 0 & 0
\end{pmatrix}
\]

(b) The steady-state vector is

\[
\begin{pmatrix}
1/3 \\
3/4 \\
3/4 \\
1
\end{pmatrix}
\] \[
\begin{pmatrix}
3/4 \\
3/4 \\
3/4 \\
1
\end{pmatrix}
\] = \[
\begin{pmatrix}
3/13 \\
3/13 \\
3/13 \\
4/13
\end{pmatrix}
\].

From the steady-state vector, we see page 4 has the highest rank.

2. The companies X, Y, and Z fight for customers. This year, company X has 40 customers, Company Y has 15 customers, and Z has 20 customers. Each year, the following changes occur:

- X keeps 75% of its customers, while losing 15% to Y and 10% to Z.
- Y keeps 60% of its customers, while losing 5% to X and 35% to Z.
- Z keeps 65% of its customers, while losing 15% to X and 20% to Y.
Write a stochastic matrix A and a vector x so that Ax will give the number of customers for firms X, Y, and Z (respectively) after one year. You do not need to compute Ax.

Solution.

$$A = \begin{pmatrix} 0.75 & 0.05 & 0.15 \\ 0.15 & 0.6 & 0.20 \\ 0.1 & 0.35 & 0.65 \end{pmatrix}, \quad x = \begin{pmatrix} 40 \\ 15 \\ 20 \end{pmatrix}.$$
Supplemental problems: Chapter 6

1. True or false. If the statement is always true, answer true. Otherwise, answer false. Justify your answer.

 a) Suppose \(W = \text{Span}\{w\} \) for some vector \(w \neq 0 \), and suppose \(v \) is a vector orthogonal to \(w \). Then the orthogonal projection of \(v \) onto \(W \) is the zero vector.

 b) Suppose \(W \) is a subspace of \(\mathbb{R}^n \) and \(x \) is a vector in \(\mathbb{R}^n \). If \(x \) is not in \(W \), then \(x - x_W \) is not zero.

 c) Suppose \(W \) is a subspace of \(\mathbb{R}^n \) and \(x \) is in both \(W \) and \(W^\perp \). Then \(x = 0 \).

 d) Suppose \(\hat{x} \) is a least squares solution to \(Ax = b \). Then \(\hat{x} \) is the closest vector to \(b \) in the column space of \(A \).

Solution.

 a) True. Since \(v \in W^\perp \), its projection onto \(W \) is zero.

 b) True. If \(x \) is not in \(W \) then \(x \neq x_W \), so \(x - x_W \) is not zero.

 c) True. Since \(x \) is in \(W \) and \(W^\perp \) it is orthogonal to itself, so \(||x||^2 = x \cdot x = 0 \). The length of \(x \) is zero, which means every entry of \(x \) is zero, hence \(x = 0 \).

 d) False: \(A\hat{x} \) is the closest vector to \(b \) in \(\text{Col} \ A \).

2. Let \(W = \text{Span}\{v_1, v_2\} \), where \(v_1 = \begin{pmatrix}-1 \\ 2 \\ 1\end{pmatrix} \) and \(v_2 = \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} \).

 a) Find the closest point \(w \) in \(W \) to \(x = \begin{pmatrix}0 \\ 14 \\ -4\end{pmatrix} \).

 Let \(A = \begin{pmatrix}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{pmatrix} \). We solve \(A^T Av = A^T x \).

 \[
 A^T A = \begin{pmatrix}6 & 6 \\ 6 & 14\end{pmatrix} \quad A^T \begin{pmatrix}0 \\ 14 \\ -4\end{pmatrix} = \begin{pmatrix}24 \\ 16\end{pmatrix}.
 \]

 We find \(\begin{pmatrix}6 & 6 & 24 \\ 6 & 14 & 16\end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix}1 & 0 & 5 \\ 0 & 1 & -1\end{pmatrix} \), so \(v = \begin{pmatrix}5 \\ -1\end{pmatrix} \) and therefore

 \[
 w = Av = \begin{pmatrix}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{pmatrix} \begin{pmatrix}5 \\ -1\end{pmatrix} = \begin{pmatrix}-6 \\ 8 \\ 2\end{pmatrix}.
 \]
b) Find the distance from \(w \) to \(\begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix} \).

\[
||x - w|| = \left\| \begin{pmatrix} 0 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} -6 \\ 8 \\ 2 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 6 \\ 6 \\ -6 \end{pmatrix} \right\| = \sqrt{36 + 36 + 36} = \sqrt{108} = 6\sqrt{3}.
\]

c) Find the standard matrix for the orthogonal projection onto \(\text{Span}\{v_1\} \).

\[
B = \frac{1}{v_1 \cdot v_1} v_1 v_1^T = \frac{1}{(-1)^2 + 2^2 + 1^2} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & -2 & -1 \\ -2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}
\]

d) Find the standard matrix for the orthogonal projection onto \(W \).

Let \(A = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \). Since the columns of \(A \) are linearly independent, our projection matrix is \(A(A^TA)^{-1}A^T \). We already computed \(A^TA \) in part (a), so our matrix is

\[
A(A^TA)^{-1}A^T = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 6 & 6 & 14 \\ 6 & 14 & 6 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \frac{1}{48} \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 14 & -6 & -6 \\ -6 & 6 & 6 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.
\]

3. Find the least-squares line \(y = Mx + B \) that approximates the data points \((-2, -11), \ (0, -2), \ (4, 2)\).

Solution.

If there were a line through the three data points, we would have:

\[
(x = -2) \quad B + M(-2) = -11
\]

\[
(x = 0) \quad B + M(0) = -2
\]

\[
(x = 4) \quad B + M(4) = 2.
\]

This is the matrix equation \(\begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} B \\ M \end{pmatrix} = \begin{pmatrix} -11 \\ -2 \\ 2 \end{pmatrix} \).
Thus, we are solving the least-squares problem to $Av = b$, where

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} -11 \\ -2 \\ 2 \end{pmatrix}.$$

We solve $A^T A \hat{x} = A^T b$, where $\hat{x} = \begin{pmatrix} B \\ M \end{pmatrix}$.

$$A^T A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 20 \end{pmatrix},$$

$$A^T b = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 0 & 4 \end{pmatrix} \begin{pmatrix} -11 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -11 \\ 30 \end{pmatrix}.$$

So $\hat{x} = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$. In other words, $y = -5 + 2x$, or $y = 2x - 5$.