\qquad
\qquad

Math 1553 Quiz 3, Fall 2019 (10 points, 10 minutes)

Solutions

Show your work on problem 4 or you may receive little or no credit.

1. (2 points) Suppose $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in \mathbf{R}^{n}. Give a mathematically precise definition of $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.

Solution: In set-builder notation,

$$
\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}=\left\{x_{1} v_{1}+\cdots+x_{k} v_{k} \mid x_{1}, \ldots, x_{k} \text { real }\right\} .
$$

(the dividing bar could be a colon if desired, and "real" could be "scalar" here; that is just a matter of notation)

Alternatively, the student could state that $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is the set of all linear combinations of $v_{1}, v_{2}, \ldots, v_{k}$.
2. (2 points) Consider the following linear system of equations in x_{1}, x_{2}, x_{3} :

$$
\begin{gathered}
x_{1}-2 x_{2}+x_{3}=1 \\
x_{2}-x_{3}=-4 \\
x_{1}+x_{2}=5
\end{gathered}
$$

Write this system as a vector equation.
Solution:

$$
x_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+x_{2}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)+x_{3}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-4 \\
5
\end{array}\right)
$$

3. (1 point) True or false. If the statement is always true, circle TRUE. Otherwise, circle FALSE.
a) If v_{1} and v_{2} are vectors in \mathbf{R}^{3}, then $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ must be in $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.

TRUE. No matter what v_{1} and v_{2} are, $0 v_{1}+0 v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
b) $\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}=\mathbf{R}^{2}$.

FALSE. The two vectors are in \mathbf{R}^{3}, so it would make no sense whatsoever to say their span is equal to \mathbf{R}^{2}.
4. (4 points) Write $\binom{2}{-8}$ as a linear combination of $\binom{1}{2}$ and $\binom{1}{-1}$.

Solution: We solve $x_{1}\binom{1}{2}+x_{2}\binom{1}{-1}=\binom{2}{-8}$:

$$
\left(\begin{array}{rr|r}
1 & 1 & 2 \\
2 & -1 & -8
\end{array}\right) \xrightarrow{R_{2}=R_{2}-2 R_{1}}\left(\begin{array}{rr|r}
1 & 1 & 2 \\
0 & -3 & -12
\end{array}\right) \xrightarrow[\text { then } R_{1}=R_{1}-R_{2}]{R_{2}=-R_{2} / 3}\left(\begin{array}{ll|r}
1 & 0 & -2 \\
0 & 1 & 4
\end{array}\right) .
$$

Thus $x_{1}=-2$ and $x_{2}=4$. Our answer is

$$
-2\binom{1}{2}+4\binom{1}{-1}=\binom{2}{-8} .
$$

