Studio Section:_____

Math 1553 Quiz 3, Fall 2019 (10 points, 10 minutes)

Solutions

Show your work on problem 4 or you may receive little or no credit.

1. (2 points) Suppose $v_1, v_2, ..., v_k$ be vectors in \mathbb{R}^n . Give a mathematically precise definition of Span $\{v_1, v_2, ..., v_k\}$.

Solution: In set-builder notation,

Span{
$$v_1, v_2, ..., v_k$$
} = { $x_1v_1 + \dots + x_kv_k$ | x_1, \dots, x_k real}.

(the dividing bar could be a colon if desired, and "real" could be "scalar" here; that is just a matter of notation)

Alternatively, the student could state that $\text{Span}\{v_1, v_2, \dots, v_k\}$ is the set of all linear combinations of v_1, v_2, \dots, v_k .

2. (2 points) Consider the following linear system of equations in x_1, x_2, x_3 :

$$x_1 - 2x_2 + x_3 = 1$$

$$x_2 - x_3 = -4$$

$$x_1 + x_2 = 5.$$

Write this system as a vector equation. **Solution**:

$$x_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix}.$$

3. (1 point) True or false. If the statement is always true, circle TRUE. Otherwise, circle FALSE.

a) If
$$v_1$$
 and v_2 are vectors in \mathbf{R}^3 , then $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ must be in Span $\{v_1, v_2\}$.
TRUE. No matter what v_1 and v_2 are, $0v_1 + 0v_2 = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$.
b) Span $\left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\} = \mathbf{R}^2$

b) Span $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\} = \mathbf{R}^2.$

FALSE. The two vectors are in \mathbf{R}^3 , so it would make no sense whatsoever to say their span is equal to \mathbf{R}^2 .

Name:____

4. (4 points) Write $\begin{pmatrix} 2 \\ -8 \end{pmatrix}$ as a linear combination of $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Solution: We solve $x_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$: $\begin{pmatrix} 1 & 1 & | & 2 \\ 2 & -1 & | & -8 \end{pmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{pmatrix} 1 & 1 & | & 2 \\ 0 & -3 & | & -12 \end{pmatrix} \xrightarrow{R_2 = -R_2/3} \begin{pmatrix} 1 & 0 & | & -2 \\ 0 & 1 & | & 4 \end{pmatrix}$. Thus $x_1 = -2$ and $x_2 = 4$. Our answer is

$$-2\binom{1}{2}+4\binom{1}{-1}=\binom{2}{-8}.$$