\qquad

Math 1553 Quiz 4, Fall 2019 (10 points, 10 minutes)

Solutions

Show your work on problem 3 or you may receive little or no credit.

1. (1 point each) True or false. If the statement is always true, answer TRUE. Otherwise, circle FALSE.
a) The matrix transformation $T\binom{x}{y}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)\binom{x}{y}$ performs reflection across the x-axis in \mathbf{R}^{2}. TRUE \quad FALSE (T reflects across the y-axis then projects onto the x-axis)
b) The matrix transformation $T\binom{x}{y}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{x}{y}$ performs rotation counterclockwise by 90° in \mathbf{R}^{2}. TRUE FALSE (T rotates clockwise 90°)
2. (2 points) Fill in the blanks: If A is a 7×6 matrix and the solution set for $A x=0$ is a plane, then the column space of A is a $4 \quad$-dimensional subspace of $R \quad 7$. Reason: $\operatorname{rank}(A)+\operatorname{nullity}(A)=6 \quad \operatorname{rank}(A)+2=6 \quad \operatorname{rank}(A)=4$
3. (6 points) Let $A=\left(\begin{array}{cccc}1 & 1 & 2 & 1 \\ -1 & 0 & -1 & -2 \\ 2 & 2 & 4 & 2\end{array}\right)$. Find a basis for $\operatorname{Col} A$ and a basis for $\operatorname{Nul} A$. Solution: We row-reduce $(A \mid 0)$:
$\left(\begin{array}{rrrr|r}1 & 1 & 2 & 1 & 0 \\ -1 & 0 & -1 & -2 & 0 \\ 2 & 2 & 4 & 2 & 0\end{array}\right) \xrightarrow[R_{3}=R_{3}-2 R_{1}]{R_{2}=R_{2}+R_{1}}\left(\begin{array}{rrrr|r}1 & 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \xrightarrow{R_{1}=R_{1}-R_{2}}\left(\begin{array}{rrrr|r}1 & 0 & 1 & 2 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
We see x_{3} and x_{4} are free, and $x_{1}=-x_{3}-2 x_{4}$ and $x_{2}=-x_{3}+x_{4}$. The parametric vector form for elements of $\mathrm{Nul} A$ is:
$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{c}-x_{3}-2 x_{4} \\ -x_{3}+x_{4} \\ x_{3} \\ x_{4}\end{array}\right)=x_{3}\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right)$. A basis for $\operatorname{Nul} A$ is $\left\{\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right)\right\}$.
A basis for $\operatorname{Col} A$ is given by the pivot columns of A, namely $\left\{\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)\right\}$. In this case, any two columns of A will actually form a basis for $\operatorname{Col} A$, so any two columns of A will be a correct answer.
