Name: \qquad Studio Section:

Math 1553 Quiz 5, Fall 2019 (10 points, 10 minutes)
Solutions
Show your work on problem 3 or you may receive little or no credit.

1. (1 point each) True or false. If the statement is always true, answer TRUE. Otherwise, circle FALSE.
a) If $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ is a matrix transformation, then T must be onto. TRUE FALSE
(For example, the zero transformation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0)$)
b) Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right)$. Then the matrix transformation $T(x)=A x$ is one-to-one. TRUE FALSE (A has two columns but only one pivot)
2. (1 point each) In each case, determine whether the transformatino T is linear or not linear. Circle your answers.
a) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ given by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}-1, x_{1}+x_{2}\right)$.

LINEAR NOT LINEAR $T(0,0)=(0,-1,0)$
b) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ given by $T(x)=\left(\begin{array}{lll}0 & 0 & 0 \\ 2 & 2 & 2\end{array}\right) x$.

LINEAR NOT LINEAR (Every matrix transformation is linear)
turn over to the back side for problem 3!
3. (6 points) In this problem, let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear transformation that satisfies

$$
T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right), \quad T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
2 \\
-3
\end{array}\right), \quad T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
3 \\
3 \\
-5
\end{array}\right) .
$$

a) Find the standard matrix A for T.

Solution: $A=\left(\begin{array}{lll}T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right)\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 2 & 3 \\ -2 & -3 & -5\end{array}\right)$.
b) Is T one-to-one? If T is one-to-one, justify why. If T is not one-to-one, find vectors x and y (with $x \neq y$) that satisfy $T(x)=T(y)$.
Solution: We row-reduce A :

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 \\
-2 & -3 & -5
\end{array}\right) \xrightarrow[R_{3}=R_{3}+2 R_{1}]{R_{2}=R_{2}-R_{1}}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow[\text { then } R_{1}=R_{1}-2 R_{2}]{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

We see A has three columns but only two pivots, so T is not one-to-one. The parametric form of the solution to $A x=0$ is $x_{1}=-x_{3}, x_{2}=-x_{3}$, and $x_{3}=x_{3}$ (x_{3} is free). So x and y can be any two different vectors in Nul A, for example $x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ and $y=\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$, since

$$
T(x)=T(y)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

There are many other possible answers for x and y, and in this problem rowreduction was actually not necessary. For example, we can see

$$
T\left(e_{1}+e_{2}\right)=T\left(e_{3}\right)
$$

just by looking at the formula for T. This shows T is not one-to-one since $T(x)=T(y)$ for $\quad x=e_{1}+e_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) \quad$ and $\quad y=e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

