\qquad
\qquad

Math 1553 Quiz 6, Fall 2019 (10 points, 10 minutes)

Solutions

Show your work on problems 2 and 3 or you may receive little or no credit.

1. (1 point each) True or false. If the statement is always true, answer TRUE. Otherwise, circle FALSE.
a) If A is a 2×2 matrix, then $\operatorname{det}(-A)=-\operatorname{det}(A)$ TRUE FALSE Each row is multiplied by -1 , so $\operatorname{det}(-A)=(-1)^{2} \operatorname{det}(A)=\operatorname{det}(A)$.
b) If A is a 4×4 matrix and $A\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$, then $\operatorname{det}(A)=0$.

TRUE FALSE
$A x=0$ has more than just the trivial solution, so A is not invertible.
c) If A and B are $n \times n$ matrices and A and B have the same reduced row echelon form, then $\operatorname{det}(A)=\operatorname{det}(B) . \quad$ TRUE FALSE $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ have the same RREF, but different determinants.
2. (3 points) Find the area of the triangle with vertices $(-1,1),(2,4)$, and $(1,7)$.

Solution: The vector from $(-1,1)$ to $(2,4)$ is $\binom{3}{3}$ and the vector from $(-1,1)$ to $(1,7)$ is $\binom{2}{6}$. The triangle they determine has half the area of the associated parallelogram, so

$$
\text { Area of Triangle }=\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{ll}
3 & 2 \\
3 & 6
\end{array}\right)\right|=\frac{1}{2}|3(6)-3(3)|=\frac{1}{2}(12)=6 .
$$

3. (4 points) Find $\operatorname{det}(A)$ for $A=\left(\begin{array}{cccc}3 & 0 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 1 & 2 & -1 & 1 \\ 1 & 0 & 2 & 4\end{array}\right)$.

Solution: We expand along the 2 nd column.

$$
\operatorname{det}(A)=2(-1)^{3+2} \operatorname{det}\left(\begin{array}{lll}
3 & 2 & 3 \\
0 & 1 & 3 \\
1 & 2 & 4
\end{array}\right)=-2(3(4-6)-2(0-3)+3(0-1))=-2(-6+6-3)=6
$$

