1. Courage Soda and Dexter Soda compete for a market of 210 customers who drink soda each day. Today, Courage has 80 customers and Dexter has 130 customers. Each day:
 70% of Courage Soda’s customers keep drinking Courage Soda, while 30% switch to Dexter Soda.
 40% of Dexter Soda’s customers keep drinking Dexter Soda, while 60% switch to Courage Soda.

 a) Write a stochastic matrix A and a vector x so that Ax will give the number of customers for Courage Soda and Dexter Soda (in that order) tomorrow. You do not need to compute Ax.

 b) A quick computation shows that the 1-eigenspace for this positive stochastic matrix A is spanned by \(\begin{pmatrix} 2 \\ 1 \end{pmatrix} \).

 Find the steady-state vector for A. In the long run, roughly how many daily customers will Courage Soda have?
2. Let W be the set of all vectors in \mathbb{R}^3 of the form $(x, x - y, y)$ where x and y are real numbers.

a) Find a basis for W^\perp.

b) Find the matrix B for orthogonal projection onto W.