Math 1553 Worksheet §2.1, §2.2
Solutions

1. Write a set of three vectors whose span is a plane in \mathbb{R}^3.

Solution.
Just choose any two vectors that span your favorite plane, then pick your third vector to be within that plane.

For example, choose $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

2. Consider the system of linear equations

$$
\begin{align*}
 x + 2y &= 7 \\
 2x + y &= -2 \\
 -x - y &= 4.
\end{align*}
$$

Question: Does this system have a solution? If so, what is the solution set?

a) Formulate this question as an augmented matrix.

b) Formulate this question as a vector equation.

c) What does this mean in terms of spans?

d) Answer the question using the interactive demo.

e) Answer the question using row reduction.

Solution.

a) As an augmented matrix:

$$
\begin{pmatrix}
 1 & 2 & | & 7 \\
 2 & 1 & | & -2 \\
 -1 & -1 & | & 4
\end{pmatrix}
$$

b) What are the solutions to the following vector equation?

$$
 x \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \\ 4 \end{pmatrix}
$$

c) Is $\begin{pmatrix} 7 \\ -2 \\ 4 \end{pmatrix}$ in Span $\left\{ \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}$?

e) Row reducing yields

$$
\begin{pmatrix}
 1 & 0 & | & 0 \\
 0 & 1 & | & 0 \\
 0 & 0 & | & 1
\end{pmatrix},
$$

so there are no solutions. (This should be obvious from the picture in (d)).
3. Paul Drake has challenged you to find his hidden treasure, located at some point \((a, b, c)\). He has honestly guaranteed you that the treasure can be found by starting at the origin and taking steps in directions given by

\[
v_1 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 5 \\ -4 \\ -7 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}.
\]

By decoding Paul’s message, you have discovered that the first and second coordinates of the treasure’s location are (in order) \(-4\) and \(3\).

a) What is the treasure’s full location?

b) Give instructions for how to find the treasure by only moving in the directions given by \(v_1\), \(v_2\), and \(v_3\).

Solution.

a) We translate this problem into linear algebra. Let \(c\) be the final entry of the treasure’s location. Since Paul has assured us that we can find the treasure using the three vectors we have been given, our problem is to find \(c\) so that

\[
\begin{pmatrix} -4 \\ 3 \\ c \end{pmatrix}
\]

is a linear combination of \(v_1\), \(v_2\), and \(v_3\) (in other words, find \(c\) so that the treasure’s location is in \(\text{Span}\{v_1, v_2, v_3\}\)). We form an augmented matrix and find when it gives a consistent system.

\[
\begin{bmatrix}
1 & 5 & -3 & -4 \\
-1 & -4 & 1 & 3 \\
-2 & -7 & 0 & c
\end{bmatrix}
\]

This system will be consistent if and only if the right column is not a pivot column, so we need \(c - 5 = 0\), or \(c = 5\).

The location of the treasure is \((-4, 3, 5)\).

b) Getting to the point \((-4, 3, 5)\) using the vectors \(v_1\), \(v_2\), and \(v_3\) is equivalent to finding scalars \(x_1\), \(x_2\), and \(x_3\) so that

\[
\begin{pmatrix} -4 \\ 3 \\ 5 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} + x_2 \begin{pmatrix} 5 \\ -4 \\ -7 \end{pmatrix} + x_3 \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}
\]

We can rewrite this as

\[x_1 + 5x_2 - 3x_3 = -4\]
\[-x_1 - 4x_2 + x_3 = 3\]
\[-2x_1 - 7x_2 = 5.
\]

We put the matrix from part (a) into RREF:

\[
\begin{bmatrix}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

To find the treasure, start at the origin and move in the directions given by the vectors \(v_1\), \(v_2\), and \(v_3\).
Note x_3 is the only free variable, so:

\[x_1 = 1 - 7x_3, \quad x_2 = -1 + 2x_3 \quad x_3 = x_3 \quad (x_3 \text{ real}). \]

Since the system has infinitely many solutions, there are infinitely many ways to get to the treasure. If we choose the path corresponding to $x_3 = 0$, then $x_1 = 1$ and $x_2 = -1$, which means that we move 1 unit in the direction of v_1 and -1 unit in the direction of v_2. In equations:

\[
\begin{pmatrix}
-4 \\
3 \\
5
\end{pmatrix} =
\begin{pmatrix}
1 \\
-1 \\
-2
\end{pmatrix} -
\begin{pmatrix}
5 \\
-4 \\
-7
\end{pmatrix} +
\begin{pmatrix}
-3 \\
1 \\
0
\end{pmatrix}.
\]