Chapter 2

Systems of Linear Equations: Algebra

Section 2.1

Systems of Linear Equations

Line, Plane, Space, ...

Recall that \mathbf{R} denotes the collection of all real numbers, i.e. the number line. It contains numbers like $0,-1, \pi, \frac{3}{2}, \ldots$

Definition

Let n be a positive whole number. We define

$$
\mathbf{R}^{n}=\text { all ordered } n \text {-tuples of real numbers }\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \text {. }
$$

Example

When $n=1$, we just get \mathbf{R} back: $\mathbf{R}^{1}=\mathbf{R}$. Geometrically, this is the number line.

Line, Plane, Space, ...

Continued

Example

When $n=2$, we can think of \mathbf{R}^{2} as the plane. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its x and y-coordinates.

We can use the elements of \mathbf{R}^{2} to label points on the plane, but \mathbf{R}^{2} is not defined to be the plane!

Line, Plane, Space, ...

Continued

Example

When $n=3$, we can think of \mathbf{R}^{3} as the space we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its $x-, y$-, and z-coordinates.

Again, we can use the elements of \mathbf{R}^{3} to label points in space, but \mathbf{R}^{3} is not defined to be space!

Line, Plane, Space, ...

Example

All colors you can see can be described by three quantities: the amount of red, green, and blue light in that color. So we could also think of \mathbf{R}^{3} as the space of all colors:

$$
\mathbf{R}^{3}=\text { all colors }(r, g, b)
$$

Again, we can use the elements of \mathbf{R}^{3} to label the colors, but \mathbf{R}^{3} is not defined to be the space of all colors!

Line, Plane, Space, ...

So what is \mathbf{R}^{4} ? or \mathbf{R}^{5} ? or \mathbf{R}^{n} ?
\ldots go back to the definition: ordered n-tuples of real numbers

$$
\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) .
$$

They're still "geometric" spaces, in the sense that our intuition for \mathbf{R}^{2} and \mathbf{R}^{3} sometimes extends to \mathbf{R}^{n}, but they're harder to visualize.
Last time we could have used \mathbf{R}^{4} to label the amount of traffic (x, y, z, w) passing through four streets.

We'll make definitions and state theorems that apply to any \mathbf{R}^{n}, but we'll only draw pictures for \mathbf{R}^{2} and \mathbf{R}^{3}.

One Linear Equation

What does the solution set of a linear equation look like?
$x+y=1$ mu \rightarrow a line in the plane: $y=1-x$ This is called the implicit equation of the line.

We can write the same line in parametric form in \mathbf{R}^{2} :

$$
(x, y)=(t, 1-t) \quad t \text { in } \mathbf{R}
$$

This means that every point on the line has the form $(t, 1-t)$ for some real number t.

Aside

What is a line? A ray that is straight and infinite in both directions.

One Linear Equation

What does the solution set of a linear equation look like?

Does this plane have a parametric form?

$$
(x, y, z)=(t, w, 1-t-w) \quad t, w \text { in } \mathbf{R}
$$

Note: we are labeling the points on the plane by elements (t, w) in \mathbf{R}^{2}.

Aside
What is a plane? A flat sheet of paper that's infinite in all directions.

One Linear Equation

What does the solution set of a linear equation look like?

$$
x+y+z+w=1 \text { mu a "3-plane" in "4-space"... [not pictured here] }
$$

Is the plane from the previous example equal to \mathbf{R}^{2} ?
A. Yes
B. No

No! Every point on this plane is in \mathbf{R}^{3} : that means it has three coordinates. For instance, $(1,0,0)$. Every point in \mathbf{R}^{2} has two coordinates. But we can label the points on the plane by \mathbf{R}^{2}.

Systems of Linear Equations

What does the solution set of a system of more than one linear equation look like?

$$
\begin{aligned}
& x-3 y=-3 \\
& 2 x+y=8
\end{aligned}
$$

. . . is the intersection of two lines, which is a point in this case.

In general it's an intersection of lines, planes, etc.
[two planes intersecting]

Kinds of Solution Sets

In what other ways can two lines intersect?

$$
\begin{aligned}
& x-3 y=-3 \\
& x-3 y=3
\end{aligned}
$$

has no solution: the lines are parallel.

A system of equations with no solutions is called inconsistent.

Kinds of Solution Sets

In what other ways can two lines intersect?

$$
\begin{array}{r}
x-3 y=-3 \\
2 x-6 y=-6
\end{array}
$$

has infinitely many solutions: they are the same line.

Note that multiplying an equation by a nonzero number gives the same solution set. In other words, they are equivalent (systems of) equations.

Summary

- \mathbf{R}^{n} is the set of ordered lists of n numbers.
- \mathbf{R}^{n} can be used to label geometric objects, like \mathbf{R}^{2} can label points in the plane.
- The solutions of a system equations look like an intersection of lines, planes, etc.
- Finding all the solutions means finding a parametric form of the system of equations.

