## Solving Systems of Equations

## Example

Solve the system of equations

$$
\begin{aligned}
x+2 y+3 z & =6 \\
2 x-3 y+2 z & =14 \\
3 x+y-z & =-2
\end{aligned}
$$

This is the kind of problem we'll talk about for the first half of the course.

- A solution is a list of numbers $x, y, z, \ldots$ that makes all of the equations true.
- The solution set is the collection of all solutions.
- Solving the system means finding the solution set in a "parameterized" form.

What is a systematic way to solve a system of equations?

## Solving Systems of Equations

## Example

Solve the system of equations

$$
\begin{aligned}
x+2 y+3 z & =6 \\
2 x-3 y+2 z & =14 \\
3 x+y-z & =-2
\end{aligned}
$$

What strategies do you know?

- Substitution
- Elimination

Both are perfectly valid, but only elimination scales well to large numbers of equations.

## Solving Systems of Equations

## Example

Solve the system of equations

$$
\begin{aligned}
x+2 y+3 z & =6 \\
2 x-3 y+2 z & =14 \\
3 x+y-z & =-2
\end{aligned}
$$

Elimination method: in what ways can you manipulate the equations?

- Multiply an equation by a nonzero number.
- Add a multiple of one equation to another.
- Swap two equations.


## Solving Systems of Equations

## Example

Solve the system of equations

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x-3 y+2 z=14 \\
& 3 x+y-z=-2 \\
& \text { Multiply first by }-3 \quad-3 x-6 y-9 z=-18 \\
& \text { мим } 2 x-3 y+2 z=14 \\
& 3 x+y-z=-2 \\
& \text { Add first to third } \\
& \text { munnumum } \rightarrow \\
& -3 x-6 y-9 z=-18 \\
& 2 x-3 y+2 z=14 \\
& -5 y-10 z=-20
\end{aligned}
$$

Now I've eliminated $x$ from the last equation!
... but there's a long way to go still. Can we make our lives easier?

## Solving Systems of Equations

## Better notation

It sure is a pain to have to write $x, y, z$, and $=$ over and over again.

Matrix notation: write just the numbers, in a box, instead!

$$
\begin{aligned}
x+2 y+3 z & =6 \\
2 x-3 y+2 z & =14 \\
3 x+y-z & =-2
\end{aligned} \quad \text { becomes } \quad\left(\begin{array}{rrr|r}
1 & 2 & 3 & 6 \\
2 & -3 & 2 & 14 \\
3 & 1 & -1 & -2
\end{array}\right)
$$

This is called an (augmented) matrix. Our equation manipulations become elementary row operations:

- Multiply all entries in a row by a nonzero number.
- Add a multiple of each entry of one row to the corresponding entry in another.
- Swap two rows.


## Row Operations

## Example

Solve the system of equations

$$
\begin{aligned}
x+2 y+3 z & =6 \\
2 x-3 y+2 z & =14 \\
3 x+y-z & =-2
\end{aligned}
$$

Start:

$$
\left(\begin{array}{rrr|r}
1 & 2 & 3 & 6 \\
2 & -3 & 2 & 14 \\
3 & 1 & -1 & -2
\end{array}\right)
$$

Goal: we want our elimination method to eventually produce a system of equations like

$$
\begin{aligned}
x \quad & =A \\
y & =B \\
z & =C
\end{aligned} \quad \text { or in matrix form, } \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & A \\
0 & 1 & 0 & B \\
0 & 0 & 1 & C
\end{array}\right)
$$

So we need to do row operations that make the start matrix look like the end one.
Strategy (preliminary): fiddle with it so we only have ones and zeros. [animated]

## Row Operations

## Continued

$$
\left(\begin{array}{lrr|r}
1 \\
0 \\
0
\end{array} \begin{array}{rr}
2 & 3 \\
-7 & -4 \\
2 \\
-5 & -10
\end{array}\right)
$$

We want these to be zero.
It would be nice if this were a 1 .
We could divide by -7 , but that would produce ugly fractions.

Let's swap the last two rows first.

$$
\begin{aligned}
& \begin{array}{c}
\left(\begin{array}{rrr|r}
1 & 2 & 3 & 6 \\
0 & -5 & -10 & -20 \\
0 & -7 & -4 & 2
\end{array}\right) \\
\left(\begin{array}{rrr|r}
1 & 2 & 3 & 6 \\
0 & 1 & 2 & 4 \\
0 & -7 & -4 & 2
\end{array}\right)
\end{array} \\
& R_{3}=R_{3}+7 R_{2} \\
& \text { manmmann } \rightarrow \\
& R_{1}=R_{1}-2 R_{2} \\
& \left(\begin{array}{rrr|r}
1 & 2 & 3 & 6 \\
0 & 1 & 2 & 4 \\
0 & 0 & 10 & 30
\end{array}\right) \\
& \left(\begin{array}{rrr|r}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 4 \\
0 & 0 & 10 & 30
\end{array}\right)
\end{aligned}
$$

## Row Operations

## Continued

$\underbrace{\left(\begin{array}{ll|r|r}1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 10 & 30\end{array}\right)}_{\text {want these to be zero. }}$

## We want these to be zero. Let's make this a 1 first.

$$
\begin{array}{cl}
\begin{array}{c}
R_{3}=R_{3} \div 10 \\
\text { mumumi } \\
R_{2}=R_{2}-2 R_{3} \\
\text { mumumun }
\end{array} & \left(\begin{array}{rrr|r}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right) \\
& \left(\begin{array}{rrr|r}
1 & 0 & -1 & -2 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& R_{1}=R_{1}+R_{3} \\
& \text { wnumum }
\end{aligned}
$$

translates into
numnmmun

$$
\begin{aligned}
&\left(\begin{array}{lll|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right) \\
& x \\
&=1 \\
& y \\
& \\
&=-2 \\
& z
\end{aligned}
$$

## Success!

Check:

$$
\begin{aligned}
& x+2 y+3 z=6 \text { substitute solution } \quad 1+2 \cdot(-2)+3 \cdot 3=6 \\
& 2 x-3 y+2 z=14 \text { mummmminnm } 2 \cdot 1-3 \cdot(-2)+2 \cdot 3=14 \\
& 3 x+y-z=-2 \\
& 3 \cdot 1+ \\
& (-2)-3=-2
\end{aligned}
$$

## Row Equivalence

## Important

The process of doing row operations to a matrix does not change the solution set of the corresponding linear equations!

## Definition

Two matrices are called row equivalent if one can be obtained from the other by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the same solution set.

## A Bad Example

## Example

Solve the system of equations

$$
\begin{array}{r}
x+y=2 \\
3 x+4 y=5 \\
4 x+5 y=9
\end{array}
$$

Let's try doing row operations: [interactive row reducer]

| First clear these by subtracting multiples of the first row. | $\left(\begin{array}{ll\|l}1 & 1 & 2 \\ 3 & 4 & 5 \\ 4 & 5 & 9\end{array}\right)$ | $R_{2}=R_{2}-3 R_{1}$ mumumumu | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 4 & 5\end{array}\right.$ | (r) $\left.\begin{array}{r}2 \\ -1 \\ 9\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $R_{3}=R_{3}-4 R_{1}$ <br> munnmumun $\rightarrow$ | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right.$ | ( $\left.\begin{array}{r}2 \\ -1 \\ 1\end{array}\right)$ |
| Now clear this by subtracting | $\left(\begin{array}{rr\|r}1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right)$ | $R_{3}=R_{3}-R_{2}$ mummm | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right.$ | (r $\left.\begin{array}{r}2 \\ -1 \\ 2\end{array}\right)$ |

## A Bad Example

$$
\left(\begin{array}{ll|r}
1 & 1 & 2 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{array}\right) \stackrel{\text { translates into }}{\text { anmumum }} \quad \begin{aligned}
x+y & =2 \\
y & =-1 \\
0 & =2
\end{aligned}
$$

In other words, the original equations

$$
\begin{array}{rlrl}
x+y & =2 & & x+y \\
3 x+4 y & =5 \\
3 x+5 y & =9 & \text { have the same solutions as } & \\
4 x & =-1 \\
& & 0 & =2
\end{array}
$$

But the latter system obviously has no solutions (there is no way to make them all true), so our original system has no solutions either.

## Definition

A system of equations is called inconsistent if it has no solution. It is consistent otherwise.

## Section 2.2

Row Reduction

## Row Echelon Form

Let's come up with an algorithm for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in row echelon form if

1. All zero rows are at the bottom.
2. Each leading nonzero entry of a row is to the right of the leading entry of the row above.
3. Below a leading entry of a row, all entries are zero.

Picture:

$$
\left(\begin{array}{ccccc}
\boxed{\star} & \star & \star & \star & \star \\
0 & \star & \star & \star & \star \\
0 & 0 & 0 & \boxed{\star} & \star \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{array}{|c}
\star=\text { any number } \\
\end{array}
$$

## Definition

A pivot $\triangle$ is the first nonzero entry of a row of a matrix. A pivot column is a column containing a pivot of a matrix in row echelon form.

## Reduced Row Echelon Form

A matrix is in reduced row echelon form if it is in row echelon form, and in addition,
4. The pivot in each nonzero row is equal to 1 .
5. Each pivot is the only nonzero entry in its column.

Picture:

$$
\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& \star=\text { any number } \\
& 1=\text { pivot }
\end{aligned}
$$

Note: Echelon forms do not care whether or not a column is augmented. Just ignore the vertical line.

## Question

Can every matrix be put into reduced row echelon form only using row operations?
Answer: Yes! Stay tuned.

## Reduced Row Echelon Form

## Continued

Why is this the "solved" version of the matrix?

$$
\left(\begin{array}{lll|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

is in reduced row echelon form. It translates into

$$
\begin{aligned}
& x=1 \\
& y=-2 \\
& z=3,
\end{aligned}
$$

which is clearly the solution.

But what happens if there are fewer pivots than rows?

$$
\left(\begin{array}{lll|l}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

... parametrized solution set (later).

## Poll

Which of the following matrices are in reduced row echelon form?

$$
\left.\begin{array}{l}
\text { A. }\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \\
\text { C. }\left(\begin{array}{lll}
0 \\
1 \\
0 \\
0
\end{array}\right)
\end{array} \begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right) \quad \text { E. }\left(\begin{array}{llll}
0 & 1 & 8 & 0
\end{array}\right) .
$$

Answer: B, D, E, F.
Note that A is in row echelon form though.

## Summary

- Solving a system of equations means producing all values for the unknowns that make all the equations true simultaneously.
- It is easier to solve a system of linear equations if you put all the coefficients in an augmented matrix.
- Solving a system using the elimination method means doing elementary row operations on an augmented matrix.
- Two systems or matrices are row-equivalent if one can be obtained from the other by doing a sequence of elementary row operations. Row-equivalent systems have the same solution set.
- A linear system with no solutions is called inconsistent.
- The (reduced) row echelon form of a matrix is its "solved" row-equivalent version.

