## Section 4.3

Linear Transformations

## Linear Transformations

In the last two lectures we have been asking questions about transformations, and answering them in the case of matrix transformations.

However, sometimes it is not clear if a transformation is a matrix transformation or not.

## Example

For a vector $x$ in $\mathbf{R}^{2}$, let $T(x)$ be the counterclockwise rotation of $x$ by an angle $\theta$. Is $T(x)=A x$ for some matrix $A$ ?


Today we will answer this question.

## Linear Transformations

So, which transformations actually come from matrices?
Recall: If $A$ is a matrix, $u, v$ are vectors, and $c$ is a scalar, then

$$
A(u+v)=A u+A v \quad A(c v)=c A v .
$$

So if $T(x)=A x$ is a matrix transformation then,

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c v)=c T(v)
$$

Any matrix transformation has to satisfy this property. This property is so special that it has its own name.

## Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies the above equations for all vectors $u, v$ in $\mathbf{R}^{n}$ and all scalars $c$.

In other words, $T$ "respects" addition and scalar multiplication.
Check: if $T$ is linear, then

$$
T(0)=0 \quad T(c u+d v)=c T(u)+d T(v)
$$

for all vectors $u, v$ and scalars $c, d$. More generally,

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n} T\left(v_{n}\right)
$$

In engineering this is called superposition.

## Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. Is $T$ linear? Check:

$$
\begin{aligned}
T(u+v) & =1.5(u+v)=1.5 u+1.5 v=T(u)+T(v) \\
T(c v) & =1.5(c v)=c(1.5 v)=c(T v)
\end{aligned}
$$

So $T$ satisfies the two equations, hence $T$ is linear.
Note: $T$ is a matrix transformation!

$$
T(x)=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right) x
$$

as we checked before.

## Linear Transformations

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=$ the vector $x$ rotated counterclockwise by an angle of $\theta$.
Is $T$ linear? Check:


The pictures show $T(u)+T(v)=T(u+v)$ and $T(c u)=c T(u)$.
Since $T$ satisfies the two equations, $T$ is linear.

## Linear Transformations

Is every transformation a linear transformation?
No! For instance, $T\binom{x}{y}=\left(\begin{array}{c}\sin x \\ x y \\ \cos y\end{array}\right)$ is not linear.
Why? We have to check the two defining properties. Let's try the second:

$$
T\left(c\binom{x}{y}\right)=\left(\begin{array}{c}
\sin (c x) \\
(c x)(c y) \\
\cos (c y)
\end{array}\right) \stackrel{?}{=} c\left(\begin{array}{c}
\sin x \\
x y \\
\cos y
\end{array}\right)=c T\binom{x}{y}
$$

Not necessarily: if $c=2$ and $x=\pi, y=\pi$, then

$$
\begin{aligned}
T\left(2\binom{\pi}{\pi}\right) & =T\binom{2 \pi}{2 \pi}=\left(\begin{array}{c}
\sin 2 \pi \\
2 \pi \cdot 2 \pi \\
\cos 2 \pi
\end{array}\right)=\left(\begin{array}{c}
0 \\
4 \pi^{2} \\
1
\end{array}\right) \\
2 T\binom{\pi}{\pi} & =2\left(\begin{array}{c}
\sin \pi \\
\pi \cdot \pi \\
\cos \pi
\end{array}\right)=\left(\begin{array}{c}
0 \\
2 \pi^{2} \\
-2
\end{array}\right) .
\end{aligned}
$$

So $T$ fails the second property. Conclusion: $T$ is not a matrix transformation! (We could also have noted $T(0) \neq 0$.)

## Poll

## Poll

Which of the following transformations are linear?
A. $T\binom{x_{1}}{x_{2}}=\binom{\left|x_{1}\right|}{x_{2}}$
B. $T\binom{x_{1}}{x_{2}}=\binom{2 x_{1}+x_{2}}{x_{1}-2 x_{2}}$
C. $T\binom{x_{1}}{x_{2}}=\binom{x_{1} x_{2}}{x_{2}}$
D. $T\binom{x_{1}}{x_{2}}=\binom{2 x_{1}+1}{x_{1}-2 x_{2}}$
A. $T\left(\binom{1}{0}+\binom{-1}{0}\right)=\binom{0}{0} \neq\binom{ 2}{0}=T\binom{1}{0}+T\binom{-1}{0}$, so not linear.
B. Linear.
C. $T\left(2\binom{1}{1}\right)=\binom{4}{2} \neq 2 T\binom{1}{1}$, so not linear.
D. $T\binom{0}{0}=\binom{1}{0} \neq 0$, so not linear.

Remark: in fact, $T$ is linear if and only if each entry of the output is a linear function of the entries of the input, with no constant terms. Check this!

## The Matrix of a Linear Transformation

We will see that a linear transformation $T$ is a matrix transformation: $T(x)=A x$.

But what matrix does $T$ come from? What is $A$ ?

Here's how to compute it.

## Unit Coordinate Vectors

## Definition

The unit coordinate vectors in $\mathbf{R}^{n}$ are

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$




Note: if $A$ is an $m \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$, then $A e_{i}=v_{i}$ for $i=1,2, \ldots, n$ : multiplying a matrix by $e_{i}$ gives you the $i$ th column.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)
$$

## Linear Transformations are Matrix Transformations

Recall: A matrix $A$ defines a linear transformation $T$ by $T(x)=A x$.

## Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right)
$$

This is an $m \times n$ matrix, and $T$ is the matrix transformation for $A$ : $T(x)=A x$. The matrix $A$ is called the standard matrix for $T$.

Take-Away
Linear transformations are the same as matrix transformations.

## Dictionary

$\begin{gathered}\text { Linear transformation } \\ T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}\end{gathered} \quad m \times n$ matrix $A=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\ \mid & \mid & & \mid\end{array}\right)$

$$
T(x)=A x
$$

$$
T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}
$$

ғum $m \times n$ matrix $A$

## Linear Transformations are Matrix Transformations

## Continued

Why is a linear transformation a matrix transformation?
Suppose for simplicity that $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$.

$$
\begin{aligned}
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =T\left(x\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+y\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) \\
& =T\left(x e_{1}+y e_{2}+z e_{3}\right) \\
& =x T\left(e_{1}\right)+y T\left(e_{2}\right)+z T\left(e_{3}\right) \\
& =\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & T\left(e_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& =A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
\end{aligned}
$$

## Linear Transformations are Matrix Transformations

Before, we defined a dilation transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. What is its standard matrix?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=1.5 e_{1}=\binom{1.5}{0} \\
T\left(e_{2}\right)=1.5 e_{2}=\binom{0}{1.5}
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right) .
$$

Check:

$$
\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)\binom{x}{y}=\binom{1.5 x}{1.5 y}=1.5\binom{x}{y}=T\binom{x}{y}
$$

## Linear Transformations are Matrix Transformations

## Question

What is the matrix for the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
T(x)=x \text { rotated counterclockwise by an angle } \theta \text { ? }
$$




$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\binom{\cos (\theta)}{\sin (\theta)} \\
T\left(e_{2}\right)=\binom{-\sin (\theta)}{\cos (\theta)}
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \quad\left(\begin{array}{c}
\theta=90^{\circ} \Longrightarrow \\
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
\text { from before }
\end{array}\right)
$$

## Linear Transformations are Matrix Transformations

Example

## Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?
[interactive]


$$
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

## Linear Transformations are Matrix Transformations

Example, continued

## Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?
[interactive]


$$
T\left(e_{2}\right)=e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

## Linear Transformations are Matrix Transformations

Example, continued

## Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?
[interactive]


$$
T\left(e_{3}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) .
$$

## Linear Transformations are Matrix Transformations

Example, continued

## Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
T\left(e_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
T\left(e_{1}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

## Linear Transformations are Matrix Transformations

## Example

## Question

Define a linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+2 y+3 z}{-y-5 z}
$$

What is the standard matrix $A$ for $T$ ?

$$
\begin{aligned}
T\left(e_{1}\right)=T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{1}{0} & T\left(e_{2}\right)=T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{2}{-1} \\
& \Longrightarrow A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -5
\end{array}\right) .
\end{aligned}
$$

## Questions About Linear Transformations

A linear transformation is a matrix transformation, so questions about linear transformations are questions about matrices.

## Question

Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear transformation that reflects through the $x y$-plane and then projects onto the $y z$-plane. Is $T$ one-to-one?

We have $T(x)=A x$ for

$$
A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

This does not have a pivot in the first column, so $T$ is not one-to-one.

## Summary

- Linear transformations are the transformations that come from matrices.
- The unit coordinate vectors $e_{1}, e_{2}, \ldots$ are the unit vectors in the positive direction along the coordinate axes.
- You compute the columns of the matrix for a linear transformation by plugging in the unit coordinate vectors.
- This is useful when the transformation is specified geometrically, in terms of a formula, or any other way that isn't as a matrix transformation.
- There are lots of equivalent conditions for a linear transformation to be one-to-one and/or onto, in terms of its matrix.

